T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

Yüksek Lisans Tezi

TİTANYUM AZOT TOPAKLARI VE BOR KATKILANMASI

Nur ELMAS

Tez Danışmanı Doç. Dr. Mustafa BÖYÜKATA

Yozgat 2011

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

Yüksek Lisans Tezi

TİTANYUM AZOT TOPAKLARI VE BOR KATKILANMASI

Nur ELMAS

Tez Danışmanı Doç. Dr. Mustafa BÖYÜKATA

Bu çalışma, Bozok Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından I.F.E.F/2010-18 kodu ile ve TÜBİTAK-108T466 nolu proje ile desteklenmiştir.

Yozgat 2011

T.C. **BOZOK ÜNİVERSİTESİ** FEN BİLİMLERİ ENSTİTÜSÜ

TEZ ONAYI

Enstitümüzün Fizik Anabilim Dalı 7011050007 numaralı öğrencisi Nur ELMAS'ın hazırladığı "Titanyum azot topakları ve bor katkılanması" başlıklı YÜKSEK LİSANS tezi ile ilgili TEZ SAVUNMA SINAVI, Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliği uyarınca 20/07/2011 Çarşamba günü saat 14:00'te yapılmış, tezin onayına OY BİRLİĞİYLE karar verilmiştir.

Başkan : Doç. Dr. Nurettin TÜRKAN

: Doç. Dr. Mustafa BÖYÜKATA (Danışman) Üye

Üye : Yrd. Doç. Dr. Ümit TEMİZER

Marti Hitenor

ONAY:

Bu tezin kabulü, Enstitü Yönetim Kurulu'nun 22. 7. 4..... tarih ve .09..... sayılı kararı ile onaylanmıştır.

Doc. Dr. Recep SAHINGÖZ Bozok Üniversitesi Fen Bil. Enst. Müdürü

İÇİNDEKİLER

	<u>Sayfa</u>
ÖZET	iii
ABSTRACT	iv
TEŞEKKÜR	v
TABLOLAR LİSTESİ	vi
ŞEKİLLER LİSTESİ	vii
KISALTMALAR LİSTESİ	ix
1. GİRİŞ	1
2. TEORİK GERİ PLAN VE YÖNTEM	6
2.1. Schrödinger Denklemi	6
2.2. Hartree-Fock Teoremi	11
2.3. Moleküler Orbitaller	11
2.4. Yoğunluk Fonksiyon Teorisi	25
2.5. Hesaplamalarda Kullanılan Programlar	29
2.6. Hesaplanan Nicelikler	30
3. BULGULAR	34
3.1. İki Atomlu Sistemler	34
3.2. Bor-Azot Sistemleri: $B_yN_{6-y}(y \le 6)$ ve (BN) _y (y \le 12) Yapıları	39
3.3. Titanyum-Azot Sistemleri: Ti $_{x}$ (x<8) Topakları ve N_{2} Katkılı Kompleksleri $\hdots \dots$	46
3.4. Titanyum-Bor-Azot SistemleriTi_1B_yN_z (y, $z \le 6$) Topakları	52
3.4.1. $Ti_1B_1N_z$ (z≤6) Topakları	53
3.4.2. $Ti_1B_2N_z$ (z≤6) Topakları	57
3.4.3. $Ti_1B_3N_z$ (z≤6) Topakları	60
3.4.4. Ti ₁ B ₄ N _z (z≤6) Topakları	63
3.4.5. Ti ₁ B ₅ N _z (z≤6) Topakları	66
3.4.6. Ti ₁ B ₆ N _z (z≤6) Topakları	69
3.4.7. Enerji Analizleri	72
4. SONUÇ VE ÖNERİLER	87
KAYNAKLAR	89
ÖZGEÇMİŞ	94

TİTANYUM AZOT TOPAKLARI VE BOR KATKILANMASI

Nur ELMAS

Bozok Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı Yüksek Lisans Tezi

2011; Sayfa: 94

Tez Danışmanı: Doç. Dr. Mustafa BÖYÜKATA

ÖZET

Bu çalışmada Ti-B-N topaklarının çeşitli yapıları Yoğunluk Fonksiyonu Teorisi ile incelendi. Hesaplamalar için B3LYP fonksiyoneli ve 6-311++g** baz seti kullanıldı. B_yN_{6-y} (y≤6), (BN)_y (y≤12), Ti_x (x≤8) ve Ti_xN₂ topakları çalışıldı. Ti₁B_yN_z (y,z≤6) topakları ayrıntılı olarak incelendi. Bu sistemler için yapı ve enerji analizleri gerçekleştirildi. Ayrıca Ti₁B_yN_z (y,z≤6) topakları için N, 2N, N₂, N+N₂ ve 2N₂ ayrışma kanalları araştırıldı.

Anahtar Kelimeler: Yoğunluk Fonksiyon Teorisi, Titanyum, Azot, Bor, Topak, Nanoyapı

TITANIUM NITROGEN CLUSTERS AND BORON DOPING

Nur ELMAS

Bozok University Graduate School of Natural and Applied Sciences Department of Physics Master of Science Thesis

2011; Page: 94

Thesis Supervisor: Assoc. Prof. Dr. Mustafa BÖYÜKATA

ABSTRACT

In this study various structures of Ti-B-N clusters have been investigated with Density Function Theory. For computation B3LYP functional and 6-311++g** basis set have been used. B_yN_{6-y} (y≤6), (BN)_y (y≤12), Ti_x (x≤8) and Ti_xN₂ custers have been studied. Ti₁B_yN_z (y, z≤6) clusters have been investigated, in detail. For these systems structurel and energetic analysis have been realized. Moreover, for Ti₁B_yN_z (y, z≤6) clusters N, 2N, N₂, N+N₂, and 2N₂ dissociation channels have been researched.

Keywords: Density Function Theory, Titanium, Nitrogen, Boron, Clusters, Nanostructures

TEŞEKKÜR

Bu tez çalışması boyunca beni yönlendiren hocam Doç Dr. Mustafa BÖYÜKATA'ya teşekkür ederim. Çalışmam boyunca yardımlarını esirgemeyen arkadaşlarım Muhammed AKAR ve Servet KURT'a teşekkürlerimi sunarım. Çalışmalarım sürecinde yakın ilgi ve desteğini gördüğüm değerli hocalarım Yrd. Doç. Dr. Hatice KANBUR ÇAVUŞ, Arş. Gör. Durgun DURAN, Arş. Gör. Yusuf SERT, Öğr. Gör. Salih ÇINAKLI'ya ve fizik bölümündeki diğer hocalarıma teşekkür ederim. Maddi, manevi desteğini eksik etmeyen arkadaşlarım Ayşe ÇETİNKAYA ve Münevver YİĞİTER'e teşekkür ederim.

Beni büyük fedakarlıkla büyütüp bugünlere getiren, evlatları olmaktan gurur duyduğum, her zaman yanımda olan, bana inanan, güvenen annem, babam ve ablama sonsuz teşekkür ederim.

Bu araştırma Bozok Üniversitesi Bilimsel Araştırma Projeleri Birimi ve TÜBİTAK tarafından desteklenmiştir. Teşekkürü bir borç bilirim.

TABLOLAR LİSTESİ

<u>Sayfa</u>

Tablo 3.1.	Ti, N, B İçin Hesaplanan Nicelikler				
Tablo 3.2.	Ti ₂ , TiN, TiB, N ₂ , BN, B ₂ Molekülleri İçin Hesaplanan Nicelikler				
Tablo 3.3.	Ti ₂ İçin Hesaplanan Nicelikler				
Tablo 3.4.	B _y N _{6-y} (y≤6) Yapıları İçin Hesaplanan Nicelikler				
Tablo 3.5.	(BN) _y (y≤12) Yapıları İçin Hesaplanan Nicelikler				
Tablo 3.6.	Ti _x (x≤8) Topakları İçin Hesaplanan Nicelikler	47			
Tablo 3.7.	Ti _x N ₂ Topakları İçin Hesaplanan Nicelikler	49			
Tablo 3.8.	Ti ₁ B ₁ N _z (z≤6) Topakları İçin Hesaplanan Nicelikler	56			
Tablo 3.9.	Ti ₁ B ₂ N _z (z≤6) Topakları İçin Hesaplanan Nicelikler	59			
Tablo 3.10.	Ti ₁ B ₃ N _z (z≤6) Topakları İçin Hesaplanan Nicelikler	62			
Tablo 3.11.	Ti ₁ B₄N _z (z≤6) Topakları İçin Hesaplanan Nicelikler	65			
Tablo 3.12.	Ti ₁ B ₅ N _z (z≤6) Topakları İçin Hesaplanan Nicelikler	68			
Tablo 3.13.	Ti₁B ₆ N _z (z≤6) Topakları İçin Hesaplanan Nicelikler	71			
Tablo 3.14.	Ti₁ByNz (y, z≤6) Topaklarının En Kararlı İzomerler Üzerinden Hesaplanan Ayrışma Kanalları	85			

ŞEKİLLER LİSTESİ

Şekil 2.1.	B2 Molekülü İçin Orbital Diyagramı	12			
Şekil 2.2.	N ₂ Molekülü İçin Orbital Diyagramı 12				
Şekil 2.3.	BN Molekülünde Atom Elektronlarının Molekül Orbitallerine Yerleşmeleri				
Şekil 2.4.	Kapalı Kabuk (a) ve Açık Kabuk (b) Modelleri				
Şekil 3.1.	Ti ₂ , TiN, TiB, N ₂ , BN, B ₂ Moleküllerinin Uzaklığa Bağlı Olarak Hesaplanmış Atom Başına Bağlanma Enerjileri				
Şekil 3.2.	B _y N _{6-y} (y≤6) yapılarının optimizasyonu yapılmış geometrileri	39			
Şekil 3.3.	B2N4-II Yapısının Halka Yapıdan Zincir Yapıya Geçişindeki Optimizasyon Adımları				
Şekil 3.4.	B _y N _{6-y} (y≤6) Yapılarının Atom Başına Ortalama Bağlanma Enerjileri ve HOMO-LUMO Enerji Aralıkları	43			
Şekil 3.5.	(BN) _y (y≤12) yapılarının optimizasyonu yapılmış geometrileri	44			
Şekil 3.6.	(BN) _y (y≤12) Yapıları İçin Hesaplanan (a) Atom Başına Ortalama Bağlanma Enerjileri ve (b) HOMO-LUMO Enerji Aralıkları	45			
Şekil 3.7.	(BN) _y (y≤12) Yapılarında Bor ve Azot Atomları Üzerindeki Toplam Yükler	46			
Şekil 3.8.	Ti _x (x≤8) Topaklarının Optimizasyonu Yapılmış Geometrileri	47			
Şekil 3.9.	Optimizasyonu Yapılmış TixN2 Yapılarının Geometrileri	48			
Şekil 3.10.	Ti _x ve Ti _x N ₂ Topakları İçin Hesaplanmış Olan Atom Başına Bağlanma Enerjileri	50			
Şekil 3.11.	Ti_x ve Ti_xN_2 Topakları İçin Hesaplanan İkinci Enerji Farkları	50			
Şekil 3.12.	Ti_xN_2 yapıları için hesaplanan N_2 ayrışma enerjileri	51			
Şekil 3.13.	Ti _x ve Ti _x N ₂ Topakları İçin Hesaplanan HOMO-LUMO Enerji Farkları	52			
Şekil 3.14.	Ti ₁ B ₁ N _z (z≤6) Topaklarının Optimizasyonu Yapılmış Geometrileri	54			
Şekil 3.15.	$Ti_1B_1N_6$ Yapısının $Ti_1B_1N_6$ -I Topağına Dönüşümündeki Enerji Adımları	55			
Şekil 3.16.	$Ti_1B_2N_z$ ($z \le 6$) Topaklarının Optimizasyonu Yapılmış Geometrileri	58			
Şekil 3.17.	$Ti_1B_3N_z$ ($z \le 6$) Topaklarının Optimizasyonu Yapılmış Geometrileri	61			
Şekil 3.18.	$Ti_1B_4N_z$ ($z \le 6$) Topaklarının Optimizasyonu Yapılmış Geometrileri	64			
Şekil 3.19.	$Ti_1B_5N_z$ ($z \le 6$) Topaklarının Optimizasyonu Yapılmış Geometrileri	68			
Şekil 3.20.	Ti ₁ B ₆ N _z (z≤6) Topaklarının Optimizasyonu Yapılmış Geometrileri	70			

Şekil 3.21.	Ti₁ByNz (y,z≤6) Topaklarının Atom Başına Ortalama Bağlanma Enerjileri				
Şekil 3.22.	Ti₁ByN₂ (y,z≤6) Topaklarının Atom Başına Ortalama Bağlanma Enerjileri				
Şekil 3.23.	Ti₁ByN₂ (y,z≤6) Topaklarının Atom Başına Ortalama Bağlanma Enerjileri				
Şekil 3.24.	Ti ₁ B _y N _z (y,z≤6) Topaklarının İkinci Enerji Farkları	75			
Şekil 3.25.	$Ti_1B_yN_z$ (y,z≤6) Topaklarının HOMO-LUMO Enerji Aralıkları	76			
Şekil 3.26.	$Ti_1B_yN_z$ (y=1, 2, z≤6) Topaklarının HOMO-LUMO Bulutları	77			
Şekil 3.27.	$Ti_1B_yN_z$ (y=3, 4, z≤6) Topaklarının HOMO-LUMO Bulutları	78			
Şekil 3.28.	$Ti_1B_yN_z$ (y=5, 6, z≤6) Topaklarının HOMO-LUMO Bulutları	79			
Şekil 3.29.	Ti₁ByN₂ (y,z≤6) Topaklarında Titanyum, Azot ve Bor atomları Üzerindeki Toplam Atomik Yükler	80			
Şekil 3.30.	Ti₁ByNz (y,z≤6) Topaklarında Vertical (Doğrudan) İyonlaşma Enerjisi (VIP)	81			
Şekil 3.31.	$Ti_1B_yN_z$ (y,z≤6) Topaklarında Vertical (Doğrudan) Elektron İlgisi .	82			
Şekil 3.32.	$Ti_1B_yN_z$ (y,z≤6) Topakları İçin Hesaplanan Kimyasal Sertlik	83			
Şekil 3.33.	Ti ₁ B _y N _z (y,z≤6) Topakları İçin Hesaplanan Elektronegatiflik	84			

KISALTMALAR LİSTESİ

YFT	:	Yoğunluk Fonksiyon Teorisi
Ti	:	Titanyum
Ν	:	Azot
В	:	Bor
VIP	:	Doğrudan İyonlaşma Enerjisi
VEA	:	Doğrudan Elektron İlgisi
ED	:	Elektronik Durum
NG	:	Nokta grup
SÇ	:	Spin çarpanı
E _{tot}	:	Toplam Enerji
$E_{b/atom}$:	Atom Başına Ortalama Bağlanma Enerjisi
НОМО	:	En Yüksek Seviyedeki Dolu Orbital
LUMO	:	En Düşük Seviyedeki Boş Orbital
$gap_{\rm HL}$:	HOMO-LUMO enerji aralığı
\mathbf{f}_{\min}	:	En Düşük Frekans Değeri
\mathbf{f}_{max}	:	En Yüksek Frekans Değeri

1. GİRİŞ

İki veya daha fazla atom bir araya gelerek molekülleri oluştururlar. Moleküller kimyasal yolla kendini oluşturan atomlara veya daha küçük moleküllere ayrıştırılabilirler. Atom ve molekül topakları (cluster), atomik ve moleküler boyuttaki mikroskobik yapıdan yoğun madde (bulk) formundaki makroskobik yapıya geçişin anlaşılmasında önemli rol oynamaktadır [1-12]. Günümüzde moleküllerin doğasını anlamak için yapılan deneysel çalışmalar yeterli olmayıp, yüksek maliyetli yeni teknikler gerekmektedir. Hesaplamalı yöntemler ile moleküler sistemlerin yapısının önceden tahmin edilebilmesi deneysel çalışmalara yön verebilmektedir.

Gerçek sistemden toplanan bilgiler bilgisayarda geliştirilen modellere uygulanarak, bir çok simülasyon (benzetim) programı geliştirilmiştir. Simülasyon modelleri karmaşık problemlerin çözümünde de başarılı olmaktadır. Bu çalışmada yapılan hesaplamalarda Gaussian 03 paket programı kullanıldı [13]. Bu program Ab-initio elektronik yapı hesaplamalarına dayanan, daha önceleri elde edilemeyen molekül tiplerinin incelenmesinde kolaylık ve performans artışı sağlayan bir elektronik yapı programıdır. Bu program fizik ve kimya alanında çalışma yapan araştırma grupları tarafından yaygın olarak kullanılmaktadır. Ab-initio hesaplamalarda Planck sabiti, ışık hızı, elektronun hızı, elektronun kütlesi gibi sabit veriler dışında deneysel veriler kullanılmadan analitik türev hesabıyla yapının enerjisi tahmin edilir. İlk olarak sistemin genel bir geometrisi belirlenir. Baz setleri yardımıyla bilgisayara girilir ve optimizasyon gerçekleştirilir. Hesaplamalarımızda sistemin geometrisini tanımlamak icin Chemcraft arayüz paket programı kullanılmıştır [14]. Ele alınan sistemlerin hesaplamaları Ab-initio elektronik yapı yöntemlerinden biri olan Yoğunluk Fonksiyonu Teorisi (YFT), (Density Functional Theory: DFT), ile B3LYP fonksiyoneli altında [15, 16], 6-311++g** baz seti kullanılarak gerçekleştirildi.

Bu çalışmada titanyum (Ti), azot (N) ve bor (B) atomları kullanılarak bu atomların oluşturduğu farklı Ti-B-N mikro topakları incelendi. Titanyumun atom numarası 22, elektron konfigürasyonu [Ar] 3d²4s² olup, tek başına korozyona karşı dirençli ve yüksek dayanıklılık-ağırlık oranına sahiptir [17]. Ti atomundan oluşan alaşımlar günümüzde havacılık, askeri, endüstriyel işlemler, otomotiv, gıda, sağlık, iletişim ve

mücevherlerde kullanılmaktadır. Titanyum düşük yoğunluklu hafif ve korozyona karşı dayanıklı bir metaldir. Saf haliyle tamamen esnektir [18]. Ti neredeyse tüm canlı varlıklarda, kayalarda, sularda ve toprakta bulunur [19]. N ametaller sınıfında bulunur ve atom numarası 7'dir. 1s²2s²2p³ elektron konfigürasyonuna sahiptir. Renksiz kokusuz, tatsız bir gaz olan N₂ dünya atmosferinin %78'inde bulunmaktadır. Ti atomu N atomuyla birleşince aşınma direnci yüksek bir malzeme haline geldiği için kaplama sanayisinde oldukça yaygın olarak kullanılmaktadır. Atom numarası 5 olan bor 1s²2s²2p¹ elektron konfigürasyonuna sahiptir. Ametal sınıfında olup doğada saf halde değil farklı atomlarla birlikte bileşikler halinde bulunmaktadır. Kristal haldeki bor, hafif, sert, çizilmeye karşı dirençli, ısıya karşı dayanıklı ve oda sıcaklığında zayıf elektrik iletkenliğine sahiptir. Ülkemiz, dünya bor rezervlerinin %72'sine sahip olmasına rağmen, bor üretimi %31 düzeyindedir. Bu açıdan bor çalışmaları büyük önem taşımaktadır. Titanyum ve bor atomlarından oluşan sistemler yüksek erime noktası, kimyasal sertlik, yüksek elektriksel ve ısısal iletkenlik gibi özelliklerinden dolayı aktif olarak çalışılmaktadır [20-23]. Ayrıca bu topaklarla ilgili hidrojen depolama kapasitesi ile ilgili çalışmalar da yapılmaktadır. TiB_n (n=2-6) zincir yapılarının hidrojen depolama kapasitesi incelenmiş ve zincir şeklinde devam eden TiB₅ yapısının diğer yapılara göre hidrojen depolamaya daha uygun olduğu sonucuna varılmıştır [24]. Bu çalışmada Ti, B ve N atomlarının farklı şekillerde bir araya geldiklerinde oluşturdukları bazı özel yapılara bakılarak, literatüre katkı sağlamak amaçlandı. Araştırma süresi ve imkanları göz önüne alınarak öngördüğümüz çalışma içeriği, yeni araştırmalar için daha da genişletilebilecek niteliktedir. Ulaşılan bulgular yeni fikirler taşımaktadır.

B ve N atomlarından oluşan $(BN)_n$ yapıları günümüzde yaygın olarak çalışılan konulardandır [25-31]. Karbon nanotüplere alternatif olarak düşünülen bornitrit nanotüplerde hegzagonal olan halkaların her birinde eşit sayıda bor ve azot olacak şekilde sırasıyla yerleşerek yapıyı oluştururlar. Bor sp² hibritleşmesi yaparak üç değerlik elektronuna sahip olabilirken azot p seviyesinde üç elektron bulundurduğundan o da üç değerlik elektronuna sahiptir. Hegzagonal halkada her ikisi de komşu atomlarla kovalent bağ oluşturarak kararlı bir yapı meydana getirirler.

Bu kapsamda literatürde teorik ve deneysel çalışmalar bulunmaktadır. Koltuk formlu (armchair) BN nanotüplerinin (5,5), (6,6), (7,7,), (8,8), (9,9), (10,10) yapısal özellikleri, yük yoğunlukları, bağ orbitalleri, HOMO (highest occupied molecular orbital: en yüksek dolu orbital) ve LUMO (lowest unoccupied molecular orbital: en düşük boş orbital) enerjileri B3LYP fonksiyoneli ve 6-31G* baz setiyle incelenmiştir [28]. Yine bir başka teorik çalışmada aynı yöntemle, 3 tane zikzag ve 2 tane koltuk tiplerinde BN nanotüplerin geometrik özelllikleri, B-N arasındaki bağ uzunlukları, bağ açıları ve nükleer manyetik rezonansları ile ilgili çalışmalar yapılmıştır [25]. BN nanotüp sistemleri deneysel olarak da çalışılmaktadır [30].

M(BN)₃₆ ve M₄(BN)₃₆ (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu) yapılarının manyetik özellikleri ve metal atomlarının (BN)36 molekülüne yerleşmelerindeki yapısal değişiklikler yoğunluk fonksiyon teorisiyle incelenmiştir [27]. (BN)_n (n=1-6) halka yapıları ve (BN)_n (n=12, 24, 60) fulleren yapılarının toplam enerjileri, bağlanma enerjileri, bağ uzaklıkları, bağ açıları gibi nicelikler, Ab-initio (STO-3G) yöntemiyle çalışılmıştır [31]. Yine 6 tetragonal ve 8 hekzagonal BN halkasından oluşan kafes B₁₂N₁₂ yapısı PM5 ile incelenerek, HOMO-LUMO enerji aralığı 5.1 eV olarak bulunmuştur [29]. Bir başka teorik çalışmada da (BN)_n (n=3-5) yapılarının değerlik elektronları yani LUMO enerji seviyeleri, orbitallerin doluluk oranları B3LYP/ccpVDZ fonksiyoneli kullanılarak ayrıntılı olarak incelenmiştir [26]. Ayrıca bu yapıların hidrojen tutma becerisi de çalışılan konulardandır. $B_x N_x H_y$ (x=2, 3, y \ge 2x) sistemlerinin termokimyasal özellikleri, bağ uzaklıkları, bağ açıları yoğunluk fonksiyon teorisi ile B3LYP fonksiyoneli altında 6-311+G** baz setiyle incelenmiştir [32]. Yaygın kullanılabilme özellikleri sebebiyle günümüzde Ti topakları çokça çalışılan konulardandır. Wei ve arkadaşları [33] YFT ile Ti_n (n=2-10) topaklarının farklı izomerlerini, simetri gruplarını, bağlanma enerjilerini, ortalama bağ uzunlukları, koordinasyon sayılarını incelemişlerdir. Benzer bir çalışmada da, Du ve arkadaşları [34] Ti_n (n=2-5) yapılarının hesabında B3LYP, BLYP, SVWN, BVWN, MPWP86, BP86, PBEPBE ve BPBE fonksiyonelleri ve CEP-121G baz setini kullanmışlardır. Yine bir başka teorik çalışmada, genelleştirilmiş gradyent yaklaşımı kullanılarak YFT ile Ti_n (n=3-8) ve Ti₁₃ topaklarının nötral ve anyonik durumları çalışılmıştır [35]. Villanueva ve arkadaşları [36] Ti_n (n=2-15) yapılarının değişik geometrilerini incelemişler ve bu geometrilerin kararlılıkları arasında kıyaslama yapmışlardır. İkinci enerji farklarını da inceledikleri bu yapılarda Ti₇ yapısının bağıl olarak diğer yapılara göre daha kararlı olduğunu gözlemlemişlerdir. Ti_n (n=2-14, 19, 55) yapılarının geometrik ve elektronik özellikleri genelleştirilmiş gradyent yaklaşımı kullanılarak hesaplanmıştır [37]. Cao ve arkadaşları [38] Ti_n (n=1-7) yapılarının nötral ve yüklü (-2,-1, +1,+2) durumlarını hesaplayarak bu yapılara N₂ molekülü bağlamışlar ve bu sistemler için hesaplama yapmışlardır. Yapıların hesaplanmasında YFT ve B3LYP fonksiyoneli altında Ti için CEP-121G, N için ise 6-311++G* baz setini kullanmışlardır. Ti_xN₂ yapıları için N₂ ayrışma enerjisini hesaplamışlar ve yapılara bağlanan N2 molekülündeki N-N bağ uzaklıklarının değişimini incelemişlerdir. Ti'nin d orbitallerinden, N atomunun p orbitallerine bir yük transferi vardır ve güçlü hibritleşme içerir. Hem iyonik hem de kovalent bağlanma söz konusudur. Birlikte oluşturdukları sistemler yüksek sertlikleri aşınmaya dayanıklı olmaları sebebiyle kaplama malzemesi olarak ve araştırılmaktadır. Bu yapıların küçük boyutlardaki sistemleriyle ilgili de literatürde çalışmalar mevcuttur. Ti₄N₄, Ti₄N₃, Ti₆N₆, Ti₉N₉, Ti₈N₁₂, Ti₁₄N₁₃ yapıları, YFT ile incelenmiştir. Hesaplanan bu sistemlerde atom başına bağlanma enerjilerine bakıldığında Ti14N13 yapısının en yüksek değere sahip olduğu (6.76 eV) ve N atomları üzerindeki yük transferinin en çok olduğu yapının da bu yapı olduğu sonucuna ulaşılmıştır [39].

Azot-metal sistemleri araştırmalarda ayrıca üzerinde yoğunlaşılan konulardandır. Nikel ve N kullanılarak Ni₃(N₂)_x (x=3-9, 12) topakları için farklı izomer hesabı yapılmış, bunların en kararlı izomerleri için anyonik ve katyonik durumları incelenmiştir [40]. Yine benzer bir çalışmada Ni_n (n=2-4) yapılarına farklı sayılarda N₂ molekülü bağlanarak yapısal ve elektronik özelliklerine bakılmıştır [41]. Bir başka çalışmada da, M_n (M: Nb, Mo n=1-4) topaklarına N₂ bağlanarak oluşturulan sistemlerin bağlanma enerjileri, bağ uzunlukları, titreşim frekansları teorik olarak hesaplanmıştır [42]. Halka biçiminde N₆ içeren, ScN₆⁻, TiN₆, VN₆⁺, Ca₂N₆ ve ScN₆Cu yapılarının geometrik özellikleri, HOMO-LUMO enerji aralıkları, moleküler orbitalleri B3LYP/6-311+G* baz seti ile incelenmiştir [43]. Farklı sayıda karbonlara N₂ molekülü bağlanarak oluşturulan pozitif ve negatif yüklü C_mN₂ (m=2-14) yapılarının geometrik ve elektronik analizleri B3LYP fonksiyoneli altında 6-311g(d) ve 6-311+G(d) baz setleriyle yapılmıştır [44].

Bu çalışmaların yanı sıra N atomunun da içinde olduğu üçlü (ternary) sistemlerle ilgili çalışmalar da yapılmaktadır. B3LYP fonksiyoneli ve 6-311+G(d) baz setiyle BX(N₃)₂ (X:F, Cl, Br) yapıları hesaplanarak yapı faktörleri üzerinden geometrik analizleri yapılmıştır [45]. Bir başka çalışmada da Li-B-N, Li-Al-N ve Li-Ga-N üçlü sistemleri ve bunların hidrojen depolama kapasiteleri deneysel olarak incelenmiştir [46]. Al_xGa_yN_z (x,y,z=1-3) sistemlerinin elektronik ve yapısal özellikleri, HOMO-LUMO enerji aralıkları, Mulliken yükleri, iyonlaşma potansiyeli, elektron ilgisi gibi nicelikleri YFT ile incelenmiştir [47].

Yoğun madde formunda Ti-B-N sistemleri ile ilgili literatürde deneysel olarak yapılan çalışmalar mevcutken [48-56] nano ölçekte her üçünün de aynı anda çalışıldığı sistemlere rastlanılmadı. Geçiş metallerinin azot ile tepkimeye girerek oluşturmuş olduğu malzemeler fiziksel ve mekaniksel özellikleri bakımından (yüksek erime noktası ve tepkimeye girme isteği gibi) endüstriyel uygulamalarda önemli bir yer tutmaktadır. Bu TiN yapılara alüminyum ve bor gibi hafif elementler de katkılanarak kalınlığı 1-10 nm aralığında değişen çok katmanlı TiN ve TBN filmler çalışılmaktadır [48, 49, 52-55]. Hegzagonal BN, TiB₂ ve TiN_x kullanılarak elde edilen TiBN sistemlerinin yüzey malzemesi olarak kullanılabilmesi için deneysel çalışmalar literatürde mevcuttur [50, 51, 56].

Yeni malzeme tasarımında etkin özellikleri bulunan Ti, B ve N atomlarından oluşan üç tip atom içeren topaklarının nano boyutta araştırılmasının bilimsel çalışmalara ışık tutacağı ve bilgi birikimine olumlu katkılar sağlayacağı görülmektedir. Bu tezde raporlama sırasına göre B_yN_{6-y} (y≤6), B_yN_z (y,z≤14) sistemleri, Ti_x (x=1-8) topakları ve bu topaklara N₂ bağlanarak oluşturulan Ti_xN₂ (x=1-8) sistemleri ile Ti₁B_yN_z (y,z≤6) topaklarının sonuçları sunulacaktır. Yapı ve enerji analizleri tartışılacaktır.

2. TEORİK GERİ PLAN VE YÖNTEM

Kuantum fiziğinin doğuşuyla klasik yöntemlerle çözülemeyen problemlerin çözülebileceği anlaşılmıştır. Mikro yapıların incelenmesinde kuantum teoriye dayalı yaklaşımlar güvenilir sonuçlar verebilmektedir. Ab initio yöntemleri Planck sabiti, ışık hızı, elektronun hızı, elektronun kütlesi gibi sabit veriler dışında deneysel verilerin kullanılmadığı, kuantum kimyasal hesaplamalara dayanan, atomik ve moleküler sistemlerin özelliklerini tahmin etmeye dönük elektronik yapı hesaplama yöntemidir [57]. Bu yöntem üzerine kurulu Gaussian paket programı güvenilirliği kabul görmüş ve araştırmalarda yaygın olarak kullanılmaktadır. Programın geri planındaki matematiksel eşitlikler ve dönüşümler sunulacaktır.

2.1. Schrödinger Denklemi

Kuantum teoride çözüme Schrödinger denklemi kullanılarak başlanır. Kuantum mekaniği benzer elektronların hem parçacık hem de dalga karakterine nasıl sahip olduğunu açıklar. Schrödinger dalga denklemi

$$\left\{\frac{-h^2}{8\pi^2 m}\nabla^2 + V\right\}\psi(\vec{r},t) = \frac{i\hbar}{2\pi}\frac{\partial\psi(\vec{r},t)}{\partial t}$$
(2.1)

eşitliğiyle ifade edilir. Bu denklemde ψ dalga fonksiyonu, V parçacığın hareket ettiği potansiyel alan, *h* Planck sabiti, *m* parçacığın kütlesi ve $\nabla = \frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}$ dır. Parçacıkların enerjisi ve diğer birçok özellikleri Schrödinger denklemindeki ψ dalga fonksiyonunun uygun sınır koşullarındaki çözümüyle elde edilebilir.

Eğer V zamanın fonksiyonu değilse Schrödinger denklemi değişkenlerine ayrılarak matematiksel tekniklerle basitleştirmek suretiyle çözülebilir. Dalga fonksiyonu zamanın ve konumun fonksiyonu olarak yeniden yazılarsa;

$$\psi(\vec{r},t) = \psi(\vec{r})\tau(t)$$
(2.2)

olur. Bu eşitlik, denkle (2.1)'de kullanılırsa, zamana bağlı ve zamandan bağımsız iki denklem elde edilir. Zamandan bağımsız Schrödinger dalga denklemi aşağıdaki gibi ifade edilir:

$$H\psi(\vec{r}) = E\psi(\vec{r}).$$
(2.3)

Burada E; parçacığın enerjisi olup, H; Hamiltoniyen operatörü

$$H = \frac{-h^2}{8\pi^2 m} \nabla^2 + V \tag{2.4}$$

eşitliğiyle tanımlanır. Denklem (2.3)'ün çözümleri tanımlanan sistemin farklı kararlı durumlarına karşılık gelmektedir. Bunlardan en düşük enerjili olan taban durum (ground state) olarak adlandırılır. Denklem (2.3) sistemin rölativistik olmayan tasviridir. Büyük çekirdeklerde merkez elektronları tam olarak tanımlayamaz. Denklem (2.3) aynı zamanda bir özdeğer denklemidir. Bir fonksiyona herhangi bir operatör etki ettiğinde o fonksiyonun başka çözümlerini de üretir. Genel olarak

$$Op f = c f \tag{2.5}$$

şeklinde ifade edilebilir. Burada Op operatör, f herhangi bir fonksiyon ve c özdeğerdir. Bu fonksiyonlar kümesi denklemin özfonksiyonlarıdır ve her bir fonksiyon için bir c özdeğeri vardır. Bundan dolayı Schrödinger denklemindeki özdeğerler, moleküllerin farklı durumlarındaki enerji değerleridir.

Moleküler sistemler için, moleküllerin çekirdekleri ve elektronlarının yeri ψ dalga fonksiyonuyla belirlenir. Her parçacığın yerini vektörel olarak tanımlamak için çekirdek uzaklığını \vec{r} ve elektron uzaklığını \vec{R} olarak kabul edelim. Hamiltoniyen kinetik ve potansiyel enerjinin toplamı olarak ifade edilir:

$$H = T + V. \tag{2.6}$$

Molekülün bütün parçacıkları üzerindeki kinetik enerji ∇^2 operatörünün bir toplamı olarak yazılabilir:

$$T = -\frac{h^2}{8\pi^2} \sum_k \frac{1}{m_k} \left(\frac{\partial^2}{\partial x_k^2} + \frac{\partial^2}{\partial y_k^2} + \frac{\partial^2}{\partial z_k^2} \right).$$
(2.7)

Potansiyel enerji ise her bir parçacıkta etkileşen çiftin oluşturduğu Coulomb potansiyelinin bir toplamıdır:

$$V = -\frac{1}{4\pi\varepsilon_0} \sum_j \sum_{k
(2.8)$$

Burada Δr_{jk} etkileşen iki parçacık arasındaki uzaklık, e_j ve e_k ise i ve k parçacıkları üzerindeki yüktür. Elektron için yük e, atom numarası Z ve çekirdek yükü Ze olarak alınırsa potansiyel;

$$V = -\frac{1}{4\pi\varepsilon_0} \left(-\sum_{i}^{elektron \ \varsigmaekirdek} \left(\frac{Z_I e^2}{\Delta r_{iI}} \right) + \sum_{i}^{elektron} \sum_{j < i} \left(\frac{e^2}{\Delta r_{ij}} \right) + \sum_{I}^{\varsigmaekirdek} \sum_{J < I} \left(\frac{Z_I Z_J e^2}{\Delta R_{IJ}} \right) \right)$$
(2.9)

şeklinde yeniden yazılabilir. İlk terim elektron-çekirdek arasındaki çekim, ikinci terim elektron-elektron arasındaki itme potansiyeli ve üçüncü terim de çekirdekçekirdek arasındaki itme potansiyelidir. Kuantum kimyasındaki denklemler genellikle temel sabitleri eleyerek basitleştirilmiş bir formda tasarlanmıştır. Uzaklık birimi Bohr çapı olarak alınır:

$$a_0 = \frac{-h^2}{4\pi^2 m_e e^2} = 0.52917725 \text{Å}.$$
(2.10)

Koordinatlar a_0 'a bölünerek Bohr yarıçapı cinsinden ifade edilebilir. Enerji ölçümleri de iki elektron arasındaki Coulomb itmesinin bir Bohr yarıçapına bölünmesiyle elde edilen Hartree boyutundadır:

$$1 Hartree = \frac{e^2}{a_0}.$$
 (2.11)

1 Hartree = 27.2116 eV'dur. Bizim bulgular bölümünde vereceğimiz enerji değerleri için eV (elektrovolt) birimi kullanıldı. Burada kütleler de elektron kütlesi birimlerinde alınır. Bundan sonra yazılacak olan denklemlerde bu birimler kullanılacaktır.

Schrödinger denkleminin çözümünde kullanılan yaklaşımlardan ilki Born-Oppenheimer yaklaşımıdır. Genel olarak molekül problemlerinde çekirdek ve elektron hareketi basite indirgenerek çözülür. Bu yaklaşım çekirdeğin kütlesi elektronun kütlesinden binlerce kez daha büyük olduğu kabul edilerek açıklanabilir. Çekirdeğin hareketi elektrona oranla çok daha yavaştır. Bu sebeple elektron dağılımı moleküler sistemde çekirdeğin hızlarına değil yerleşmesine bağlıdır. Moleküler sistem için Hamiltoniyen

$$H = T^{elek}(\vec{r}) + T^{\varsigma ek}(\vec{R}) + V^{\varsigma ek-elek}(\vec{R},\vec{r}) + V^{elek}(\vec{r}) + V^{\varsigma ek}(\vec{R})$$
(2.12)

ile verilir. Born-Oppenheimer yaklaşımı problemi çözerken Hamiltoniyeni iki parçaya ayırarak birbirinden bağımsız olarak çözer. Çekirdeğin kinetik enerjisi ihmal edilirse Hamiltoniyen

$$H^{elek} = -\frac{1}{2} \sum_{i}^{elektron} \left(\frac{\partial^{2}}{\partial x_{i}^{2}} + \frac{\partial^{2}}{\partial y_{i}^{2}} + \frac{\partial^{2}}{\partial z_{i}^{2}} \right) - \sum_{i}^{elektron} \sum_{I} \left(\frac{Z_{I}}{\left| \overrightarrow{R_{I}} - \overrightarrow{r_{i}} \right|} \right) + \sum_{i}^{elektron} \sum_{j < i} \left(\frac{1}{\left| \overrightarrow{r_{i}} - \overrightarrow{r_{j}} \right|} \right) + \sum_{I}^{eekirdek} \sum_{J < I} \left(\frac{Z_{I}Z_{J}}{\left| \overrightarrow{R_{I}} - \overrightarrow{R_{J}} \right|} \right)$$
(2.13)

şeklinde yeniden yazılabilir. Schrödinger denkleminde kullanılan Hamiltoniyen elektronların çekirdek alanındaki hareketine göre tanımlanabilir:

$$H^{elek}\psi^{elek}(\overrightarrow{r},\overrightarrow{R}) = E^{ep}\psi^{elek}(\overrightarrow{r},\overrightarrow{R}).$$
(2.14)

Buradaki dalga fonksiyonunun çözümü için E^{ep} etkin potansiyel ifadesi bulunmalıdır. Etkin potansiyel sistemin potansiyel enerji yüzeyinin tanımlanmasına ve çekirdek koordinatlara bağlıdır. Etkin potansiyel ifadesi kullanılarak nükleer Hamiltoniyen

$$H^{n\tilde{u}k} = T^{n\tilde{u}k}(\vec{R}) + E^{ep}(\vec{R})$$
(2.15)

şeklinde yazılabilir. Nükleer hareket için Schrödinger denkleminde çekirdeğin titreşimsel ve küresel simetrik durumları tanımlanırken bu Hamiltoniyen kullanılır. Molekülün titreşim spektrumunun tahmin edilebilmesi için bu Schrödinger denkleminin çözülmesi gerekmektedir. Yapılması gereken elektron problemi üzerine odaklanmaktır. Çözümlerde tüm operatör ve fonksiyonlar denklem (2.15) ihmal edilerek yapılır.

Denklem (2.15) çözülürken, dalga fonksiyonu üzeride bazı kısıtlamalar vardır. $|\Psi^2|$ parçacıkların bulunma olasılıklarını tanımlayan yoğunluk fonksiyonudur. Bundan dolayı Ψ dalga fonksiyonunun tüm uzay üzerinden integrali alınarak normalize edilir:

$$\int_{-\infty}^{+\infty} |c\psi|^2 dv = n_{parçacik} \left(c * c \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \psi * \psi \, dx \, dy \, dz = n \right).$$
(2.16)

Schrödinger dalga denklemi bir özdeğer denklemi olduğundan dalga fonksiyonu normalize edilmelidir. Bu, Schrödinger denkleminin çizgisel olmasının açık bir sonucudur: İki veya daha fazla çözümün her çizgisel bileşimi de bir başka çözümdür. Örneğin; herhangi bir özdeğer denkleminde f bir çözüm ise o zaman c herhangi bir özdeğer olmak üzere cf de bir çözümdür. Schrödinger denkleminde $H(c\psi) = cH(\psi)$ ve $E(c\psi) = cE(\psi)$ eşitlikleri kullanılabilir ve eğer ψ bir çözüm ise c ψ de başka bir çözümdür.

İkinci olarak elektronlardan oluşan sistemin dalga fonksiyonu, ψ , Pauli dışarlama ilkesi gereği, sistemdeki iki elektronun yer değiştirmesi altında antisimetrik olmalıdır. Spin kuantum sayısı buçuklu (s=1/2, 3/2, 5/2...) olan ve fermiyon denilen parçacıklar Pauli dışarlama ilkesine uyarlar. Elektronlar, protonlar ve nötronlar fermiyondur. Fermiyonlardan oluşan bir sistemi tanımlayan dalga fonksiyonu antisimetriktir. Bir atomda her durum için tek bir elektron bulunabildiğinden periyodik tablonun temeli elektronların fermiyon olma gerçeğine dayanır. Elektronların fermiyon olması metallerdeki elektronların davranışını da açıklar: Düşük sıcaklıkta metallerdeki tüm enerji durumları belli bir seviyeye kadar doldurulur bu enerji seviyesi Fermi enerjisi olarak adlandırılır. Enerji durumlarındaki bu doluşu Fermi-Dirac istatistiği açıklar. Fermiyonlar için Pauli dışarlama ilkesi iki parçacığın aynı kuantum durumunda bulunmasını önler ve

$$f(i,j) = -f(i,j).$$
 (2.17)

ile ifade edilir. Fermiyonların tamamına eşlik eden dalga fonksiyonu

$$\psi(\overrightarrow{r}_1,...,\overrightarrow{r}_i...,\overrightarrow{r}_j...,\overrightarrow{r}_n) = -\psi(\overrightarrow{r}_1,...,\overrightarrow{r}_i...,\overrightarrow{r}_j...,\overrightarrow{r}_n)$$
(2.18)

şeklinde tek bir fonksiyon ile tanımlanabilir.

2.2. Hartree-Fock Teoremi

Ab-initio yöntemlerden ilki Hartree-Fock Teorisidir. Bu yaklaşımın avantajı; tek bir elektron dalga fonksiyonunu içeren bir Slater determinantı kullanması, varyasyonel olması ve toplam enerjiyi minimize eden bir deneme dalga fonksiyonu kullanmasıdır. Fakat Hartree-Fock yöntemi elektronlar arasındaki korelasyonu (ilişkiyi) göz önüne almaz. Ayrıca bazı geometrilerde oldukça başarılı iken bağ oluşumu ya da kırılmasında başarısızdır. Hartree yaklaşımı çok elektronlu sistemin dalga fonksiyonunu, tek elektron dalga fonksiyonlarının (orbitallerin) çarpımı olarak yazmaya dayanır:

$$\psi(\overrightarrow{r_1}, \overrightarrow{r_2}, \dots, \overrightarrow{r_N}) = \prod_{i=1}^N \psi_i(r_i).$$
(2.19)

2.3. Moleküler Orbitaller

Moleküler orbitallerin belirlenmesinde ilk olarak sistemin elektronlarının olasılık yoğunluğunun tanımlanması dikkate alınmaktadır. Moleküler orbitallerin kombinasyonu olan ψ normalize ve ortagonal seçilebilir:

$$\iiint \phi_i^* \phi_i \, dx \, dy \, dz = 1$$

$$\iiint \phi_i^* \phi_j \, dx \, dy \, dz = 0 \quad i \neq j.$$
(2.20)

Moleküler orbitallerin kombinasyonu olarak ψ dalga fonksiyonunu oluşturmanın bir yolu olan bu basitleştirme, moleküler orbitallerin Hartree çarpanı ile oluşturulur:

$$\psi(\vec{r}) = \phi_1(\vec{r}_1)\phi_2(\vec{r}_2)....\phi_n(\vec{r}_n).$$
 (2.21)

Bu fonksiyonu antisimetrik hale getirmek gerekmektedir. Moleküler orbitallerin kombinasyonundan oluşan antisimetrik fonksiyonlar bir determinanttır. Anlaşılabilir olması için örnek olarak B₂, N₂ ve BN molekülleri için moleküler orbitallerine bakılabilir. Bor atomunun moleküler orbitallerindeki elektron düzeni, $(\sigma_s)^2$, $(\sigma_s^*)^2$, $(\pi_x)^1$ ve $(\pi_y)^1$ [58], N₂ molekülünün moleküler orbital yapısı $(\sigma_s)^2$, $(\sigma_s^*)^2$, $(\pi_x)^2$, $(\pi_y)^2$ ve $(\sigma_z)^2$ [58]ve BN molekülünün elektron düzeni ise $(\sigma_s)^2$, $(\sigma_s^*)^2$, $(\sigma_z)^2$, $(\pi_x)^1$, $(\pi_y)^1$ 'dir [59]. B₂, N₂ ve BN molekülleri için moleküler orbital diyagramları sırasıyla Şekil 2.1, 2.2 ve 2.3'de görülmektedir.

Şekil 2.1. B₂ Molekülü İçin Orbital Diyagramı [58]

Şekil 2.2. N2 Molekülü İçin Orbital Diyagramı [58]

Şekil 2.3. BN Molekülünde Atom Elektronlarının Molekül Orbitallerine Yerleşmeleri [59]

Elektronlar spin-yukarı ve spin-aşağı olmak üzere iki yönelimde olabilirler. Denklem (2.21)'e bakıldığında elektronlar tek yönelimde gibi gözükmektedir. Birçok hesaplamada elektronların her ikisininde zıt spinde yerleşmiş olduğu duruma göre denklem sınırlandırılır. α ve β iki spin fonksiyonu olarak tanımlanırsa

$$\begin{aligned} \alpha(\uparrow) &= 1 & \alpha(\downarrow) = 0 \\ \beta(\uparrow) &= 0 & \beta(\downarrow) = 1 \end{aligned}$$
 (2.22)

eşitlikleri yazılabilir. Elektron spini yukarı doğru ise $\alpha=1$, elektron spini aşağı doğru ise $\beta=1$ dir. i. elektron için α ve β nın değerleri $\alpha(i)$ ve $\beta(i)$ olarak belirlenmiştir. Örneğin $\alpha(1)$ 1. elektron için α 'nın değeridir.

Elektrona ait ψ dalga fonksiyonu, α ve β moleküler orbitalleriyle spinlerin çarpımından kurulur. Moleküler orbitallerin çarpımı ve spin fonksiyonu, spin orbitali olarak tanımlanır. Burada dikkat edilmesi gereken spin orbitallerinin her zaman ortonormal olduğudur. n elektronlu bir sistem için n/2 moleküler orbital tanımlamasıyla kapalı kabuk fonksiyonları oluşturulabilir. Zıt spin çiftlerinde bu orbitallere karşılık gelen elektronlar şöyledir;

$$\psi(\vec{r}) = \frac{1}{\sqrt{n!}} \left(\begin{array}{cccc} \vec{r}_{1} & \alpha(1) & \phi_{1}(\vec{r}_{1})\beta(1) & \phi_{2}(\vec{r}_{1})\alpha(1) & \phi_{2}(\vec{r}_{1})\beta(1) & \dots & \phi_{n}(\vec{r}_{1})\alpha(1) & \phi_{n}(\vec{r}_{1})\beta(1) \\ \phi_{1}(\vec{r}_{2})\alpha(2) & \phi_{1}(\vec{r}_{2})\beta(2) & \phi_{2}(\vec{r}_{2})\alpha(2) & \phi_{2}(\vec{r}_{2})\beta(2) & \dots & \phi_{n}(\vec{r}_{2})\alpha(2) & \phi_{n}(\vec{r}_{2})\beta(2) \\ \vdots & \vdots & \vdots \\ \phi_{1}(\vec{r}_{i})\alpha(i) & \phi_{1}(\vec{r}_{i})\beta(i) & \phi_{2}(\vec{r}_{i})\alpha(i) & \phi_{2}(\vec{r}_{i})\beta(i) & \dots & \phi_{n}(\vec{r}_{i})\alpha(i) & \phi_{n}(\vec{r}_{i})\beta(i) \\ \phi_{1}(\vec{r}_{j})\alpha(j) & \phi_{1}(\vec{r}_{j})\beta(j) & \phi_{2}(\vec{r}_{j})\alpha(j) & \phi_{2}(\vec{r}_{j})\beta(j) & \dots & \phi_{n}(\vec{r}_{j})\alpha(j) & \phi_{n}(\vec{r}_{j})\beta(j) \\ \vdots & \vdots & \vdots \\ \phi_{1}(\vec{r}_{n})\alpha(n) & \phi_{1}(\vec{r}_{n})\beta(n) & \phi_{2}(\vec{r}_{n})\alpha(n) & \phi_{2}(\vec{r}_{n})\beta(n) & \dots & \phi_{n}(\vec{r}_{n})\alpha(n) & \phi_{n}(\vec{r}_{n})\beta(n) \\ \end{array} \right)$$
(2.23)

Bu determinantdaki her bir satır i. elektronun tüm olası durumlarını ve orbital-spin kombinasyonlarını temsil eder. Normalizasyon için başlangıç faktörü gereklidir. Determinantta iki satırın yer değiştirmesi iki elektronun değiş-tokuşuna karşılık gelir ve değişme özelliğine sahiptir (yani determinatın işareti değişir). Matematiksel olarak antisimetrik dalga fonksiyonuna karşılık gelir. Kuantum mekaniği, bir elektronun konumunun belirleyici olmadığını, bunun yerine bir olasılık yoğunluğu içerdiğini ifade eder. Bu bağlamda, elektron herhangi bir yerde olabilir. Bu determinant dalga fonksiyonu oluşturmak için moleküler sistemdeki elektronların tamamının olası tüm yörüngelerinin karışımını içermektedir.

Bu karışımlar baz setleriyle (kümesiyle) belirlenmektedir. Tek elektronlu dalga fonksiyonları, baz fonksiyonlarının bilinen özelliklerinden hareketle benzer bir yaklaşımla moleküler orbitallerin çizgisel (lineer) kombinasyonundan oluşur. Bu baz fonksiyonları genellikle atom çekirdeğinin üzerindedir ve atomik orbitallerle benzerlik gösterir. Ancak matematiksel davranış bu tanımdan daha geneldir. Herhangi bir set yaklaşık olarak aşağıdaki gibi tanımlanabilir:

$$\phi_i = \sum c_{\mu i} \chi_{\mu}. \tag{2.24}$$

Burada $c_{\mu i}$ moleküler orbital açılım katsayıları (Taylor açılımı), χ_{μ} 'ler de baz fonksiyonlarıdır ve normalize olmuş olanlar seçilir. Böylece χ_{μ} keyfi bir baz fonksiyonunu tercih eder.

Gaussian ve diğer Ab-initio elektronik yapı programları Gaussian tipi atomik fonksiyonları baz fonksiyonu olarak kullanır. Baz fonksiyonun en genel hali

$$g(\alpha, \vec{r}) = cx^n y^m z^1 e^{-\alpha r^2}$$
(2.25)

eşitliğiyle ifade edilir. Burada r; x, y, z koordinatlarını içerir. α , fonksiyonun radikal anlamda büyüklüğünün bir ifadesidir. Gaussian fonksiyonunda $e^{-\alpha r^2}$ x,y ve z'nin kuvvetleriyle çarpılır ve normalizasyon sabiti aşağıdaki gibi bulunur:

$$\int g^2 = 1. \tag{2.26}$$

Bu sebeple c; α , l, m ve n'ye bağlıdır. Gaussian fonksiyonu sırasıyla s, p_y ve d_{xy} tiplerinde olmak üzere üç şekilde gösterilir:

$$g_{s}(\alpha, \overrightarrow{r}) = \left(\frac{2\alpha}{\pi}\right)^{3/4} e^{-\alpha r^{2}}$$

$$g_{y}(\alpha, \overrightarrow{r}) = \left(\frac{128\alpha^{5}}{\pi^{3}}\right)^{1/4} y e^{-\alpha r^{2}}$$

$$g_{xy}(\alpha, \overrightarrow{r}) = \left(\frac{2048\alpha^{7}}{\pi^{3}}\right)^{1/4} x y e^{-\alpha r^{2}}.$$
(2.27)

Bu ifadeler ilkel (primitive) gaussianlar olarak adlandırılmaktadırlar. Gaussianlar;

$$\chi_{\mu} = \sum_{p} d_{\mu p} g_{p}.$$
(2.28)

şeklinde verilir. Burada $d_{\mu p}$ baz seti (kümesi) içerisinde verilen bir sabittir. Fonksiyonların uygulamada daima normalize edilmiş olduğuna dikkat edilmelidir. Moleküler orbitaller için elde edilen bu sonuçların tümü aşağıdaki gibi ifade edilmiştir:

$$\phi_i = \sum_{\mu} c_{\mu i} \chi_{\mu} = \sum_{\mu} c_{\mu i} \left(\sum_{p} d_{\mu p} g_p \right).$$
(2.29)

Burada $c_{\mu i}$ moleküler orbital katsayılarının çözümünde Varyasyon Prensibi kullanılır. Ξ ile belirtilen elektronik koordinatların herhangi bir normalize edilmiş taban durumu ve antisimetrik fonksiyonun varyasyon prensibinin avantajlarını Hartree-Fock teori ele alır. Ξ terimine karşılık gelen enerji ile ilgili tahmini değerler her zaman gerçek dalga fonksiyonuna karşılık gelen enerjiden daha büyük olacaktır.

$$E(\Xi) > E(\psi); \quad \Xi \neq \psi. \tag{2.30}$$

Başka bir ifadeyle, gerçek dalga fonksiyonunun enerjisi diğer herhangi normalize olmuş dalga fonksiyonunun enerjisinden daha düşük olmalıdır. Bu durumda problem, dalga fonksiyonundan doğan minimize olmuş enerjinin katsayılar kümesini bulma problemidir. Roothan ve Hall tarafından moleküler orbitallerin kabuk genişlemesiyle (c_{vi}) ilgili birbirini izleyen çeşitli denklemler tanımlanmıştır:

$$\sum_{\nu=1}^{N} (F_{\mu\nu} - \varepsilon_i S_{\mu\nu}) c_{\nu i} = 0 \quad \mu = 1, 2, 3, \dots N.$$
(2.31)

Bunun matris temsili

$$FC = SC\varepsilon \tag{2.32}$$

şeklinde yazılabilir. Burada her element bir matristir. ε orbital enerjilerinin köşegen matrisidir. Her elementin köşegen matrisi ε_i moleküler orbitali χ_i 'nin bir elektronunun orbital enerjisidir.

Fock matrisi (F) her orbitaldeki tüm elektronların alanlarının ortalama etkisini gösterir. Kapalı kabuk sistemindeki bir element için Fock denklemi

$$F_{\mu\nu} = H_{\mu\nu}^{\text{cekirdek}} + \sum_{\lambda=1}^{N} \sum_{\sigma=1}^{N} P_{\lambda\sigma} \left[(\mu\nu|\lambda\sigma) - \frac{1}{2} (\mu\lambda|\nu\sigma) \right]$$
(2.33)

ile verilir. Burada $H_{\mu\nu}^{cekirdek}$ çekirdek alanındaki tek elektronun enerjisini, *P* de yoğunluk matrisini temsil etmektedir ve

$$P_{\lambda\nu} = 2\sum_{i=1}^{dolu} c_{\lambda i}^* c_{\sigma i}$$
(2.34)

şeklinde tanımlanır. P katsayılar matrisinde sadece dolu olan orbitallerin toplamıdır. Buradaki faktör her orbitalin iki elektron tutmasından kaynaklanır.

Denklem (2.32)'deki S ise orbitaller arasındaki örtüşmeyi gösteren matristir. Yoğunluk matrisinden dolayı Fock matrisi ve orbitaller, moleküler orbitallerin genişleme katsayıları matrisine bağlıdır. Bu sebeple denklem (2.32) lineerdir. İterasyon yöntemiyle çözülen denklemdir. Bu işlemler de öz uyumlu alan (Self Consistent Field-SCF) yöntemi ile yapılmaktadır. Bu yaklaşımda enerji minimumdur ve benzer orbitaller benzer alan oluştururlar. Çözüm hem dolu ($\phi_{i,j,...}$) hem de boş ($\phi_{a,b,...}$) olarak ifade edilen orbital kümesini oluşturur. Orbitallerin sayısı kullanılan baz fonksiyonlarının sayısına eşittir. Denklem (2.33)'deki $\mu v | \lambda \sigma$ terimi iki elektron arasındaki itmelerin integralidir. Hartree-Fock davranışı altında, her elektron diğer elektronların ortalama etkisi altındadır. Yani sadece iki elektron arasındaki etkileşim değil de diğer elektron etkileri de hesaba katılır. Yüksek düzeydeki yöntemlerde bu komşu elektronların karşılıklı korelasyonlarını düzeltmek amacıyla çeşitli yollar vardır. Başlangıçtan itibaren SCF yönteminde kullanılanlar genel olarak şöyle sıralanabilir;

1) İntegral değerlendirilmesi; algoritmada kullanılmak amacıyla, elektron-elektron etkileşimleri her bir tekrarlama (iterasyon) için hafizada tutulur ve integraller Fock matrisi oluşturularak hesaplanır. 2) Önceden moleküler orbital için bir katsayı tahmin edilir ve yoğunluk matrisi oluşturulur. 3) Fock matrisi oluşturulur. 4) Yakınsama için test yapılır. Eğer bu hatalı olursa bir sonraki iterasyondan başlanır. Eğer başarılı olursa diğer hesaplamalar oluşturulmaya devam edilir.

Şimdiye kadar sadece sınırlı Hartree-Fock yöntemi dikkate alınmıştır. Açık kabuk sistemleri için eşleşmemiş elektronların davranışlarını da dikkate alan kısıtlandırılmamış bir yönteme ihtiyaç vardır. Bunun için de açık kabuk yöntemi kullanılır. Bütün Gaussian hesaplamaları elektron spinlerinin nasıl ele alınacağını içerir. Bunu da açık ve kapalı kabuk modelini kullanarak oluştururlar. Kapalı kabuk moleküller için bir çift elektron vardır ve bunlar zıt spinlerle eşleşmiştir. Yani orbitalleri doludur. Spinler çiftlenmiştir. Açık kabuk sistemler, örneğin spini yukarı ve spini aşağı olanlar, genellikle sınırlandırılmamış modellerdir. Açık kabuk hesaplamalarında spin-yukarı ve spin-aşağı elektronları sırayla α ve β elektronları olarak adlandırılır. Açık kabuk ve kapalı kabuk orbitallerine ilişkin diyagram aşağıdaki şekilde gösterilmiştir.

Şekil 2.4. (a) Kapalı Kabuk ve (b) Açık Kabuk Modelleri

Sınırlandırılmamış hesaplamalar aşağıdaki durumları içermektedir:

1) Moleküller tek sayılı elektrona sahiptirler. 2) Uyarılmış durumdadırlar. 3) Alışılmamış elektronik yapılı diğer sistemlerdirler. 4) Bağ ayrılması gibi süreçler kısıtlanmış hesaplamalardaki elektron ayrılmasını gerektirir ve bu da doğru olmayan sonuçlar oluşmasına yol açar.

Gaussian açık kabuk hesaplamalarında anahtar olarak U kullanılır. Kapalı kabuk hesaplamalarında ise R kullanılır. Farklı orbitallerde α ve β elektronlarının olması sebebiyle iki tane genişletilmiş katsayı kümesi vardır:

$$\phi_i^{\alpha} = \sum_{\mu} c^{\alpha}_{\mu i} \chi_{\mu}$$

$$\phi_i^{\beta} = \sum_{\mu} c^{\beta}_{\mu i} \chi_{\mu}.$$
(2.35)

Bu katsayılar kümesi, orbitallerin iki setini oluşturan bir çözümdür. Bu ayrık orbitaller salınım yapan sistemler için, lokalize olmamış orbitallerdir. Diğer açık kabuk sistemlerinin karakteristik nitelikleri için uygun ayrılma üretirler. Bu özfonksiyonlar sadece tekli durumları değil daha yüksek spinli örneğin ikili (doublet), dörtlü (quartet) gibi durumları da içerir.

Hartree-Fock teorisi bir molekülde elektron hareketleri arasındaki özellikle karşıt spinli elektronlardan kaynaklanan elektron etkileşimlerinde yetersiz kalmaktadır. Hartree-Fock teorisi antisimetrik dalga fonksiyonunda herhangi iki elektronun değiştokuşuna ilişkin $|\Psi^2|$ 'nin değişmez olması gereksinimini giderdiğinde benzer spinli elektron çiftlerinden ileri gelen etkin korelasyon (karşılıklı ilişki) etkilerini de içermiş olur. Zıt spinli elektronların hareketi olduğu gibi kalır. Bu elektronların korelasyonunu açıklayan SCF yöntemi elektron korelasyon metodu olarak bilinir. Elektron korelasyon problemine iki yaklaşımla bakılacaktır.

Bu yaklaşımlardan ilki konfigürasyon etkileşimidir (Configuration Interaction: CI). Bu yöntem, Hartree-Fock yöntemi gibi ψ dalga fonksiyonunun tek bir determinantla ifade edilemeyeceği hesaba katar. CI sanal (virtual) bir orbitalle Hartree-Fock dahilinde bir ya da daha fazla dolu orbitalin yer değiştirmesiyle oluşan diğer determinantlar tarafından ilerler. Sanal orbitaller SCF denklemlerinin bir çözümü olarak molekül orbitallerinin bir setini verir. Bir sistem için enerjileri en düşük olan tekli determinant dalga fonksiyonunu üreten dolu moleküler orbitallerin enerjilerinden daha yüksektir. SCF hesaplamalarından elde edilen sanal orbitaller, varyasyonel bir düzeltme değildir ve enerjileri moleküler sistemin elektron yatkınlığıyla ilişkili değildir.

Bir sanal orbitale ϕ_a denirse, determinanttaki dolu olan ϕ_i ile yer değiştirir. Bu daha yüksek enerjili orbital için elektron uyarılmasıyla eşdeğerdir. Benzer şekilde ikili bir yerine koymada, iki tane dolu orbital sanal orbitalle yer değiştirir ($\phi_a \leftarrow \phi_i$ ve $\phi_\beta \leftarrow \phi_j$) ve bu da $\psi_{i\alpha} = |\phi_1, \dots, \phi_i, \phi_{\alpha+1}, \dots, \phi_{i-1}, \phi_a, \dots, \phi_n|$ şeklinde yazılır. Üçlü yer değiştirmeler üç elektronun yer değiştirmesiyle oluşur.

Bu yaklaşımlardan ikincisi de Tam CI yöntemidir. Hartree-Fock determinantının lineer kombinasyonları olarak ψ dalga fonksiyonunun formlarıdır ve mümkün olan yer değiştirmelerin determinantı

$$\psi = b_0 \psi_0 + \sum_{s>0} b_s \psi_s$$
(2.36)

denklemiyle verilir. Burada, 0 alt indisli terimler Hartree-Fock seviyesi ve s alt indisli terimler bütün muhtemel durumların üzerinden yer değiştirmesiyle oluşur. b'ler dalga fonksiyonun enerjisi tekrar minimize edildiğinde çözülen katsayılar setidir. Fiziksel bir seviyede denklem (2.36) moleküllerin kuantum mekaniği kurallarına göre elde edilen muhtemel olan tüm elektronik durumlarının karışımıdır.

Tam CI, baz seti seçiminde bu sınırlamalar dahilinde mümkün moleküler sistemin relativistik olmayan davranışının tam bir tamamlayıcısıdır. Kullanılan baz setine uygun olarak tanımlanan elektron yoğunluğu modellenirken sistemin mümkün kuantum durumlarını temsil eder. Baz seti sonsuza kadar türevlenebilir olduğunda, zamandan bağımsız Schrödinger denklemi kesin çözüme yaklaşır. Tam CI yöntemi, teorik bir modelin birçok istenilen özelliklerine sahiptir. Fakat bütün küçük sistemler için elverişli değildir.

Bir başka elektron korelasyon yaklaşımı da Moller-Plesset pertürbasyon teorisidir. Moller-Plesset pertürbasyon teorisi çok cisimli pertürbasyon teorisi olarak bilinir. Pertürbasyon teorisi Hamiltoniyenin aşağıdaki şekilde iki parçaya bölünmesine dayanır:

$$H = H_0 + \lambda V. \tag{2.37}$$

Burada H_0 tam olarak çözülebilir olan Hamiltoniyen terimidir. λv , H_0 'a uygulanan bir pertürbasyondur. Burada V pertürbasyon operatörüdür (potansiyel enerji değildir). V'nin küçük bir pertürbasyon olduğu varsayılırsa H_0 'da pertürbe olmuş dalga fonksiyonudur ve enerji, V'nin kuvvet serileri cinsinden ifade edilebilir. Kullanılan en genel yöntem dalga fonksiyonunu ve enerjiyi λ parametreleri cinsinden yazmaktır:

$$\psi = \psi^{(0)} + \lambda \psi^{(1)} + \lambda^2 \psi^{(2)} + \lambda^3 \psi^{(3)} + \dots$$

$$E = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \lambda^3 E^{(3)} + \dots$$
(2.38)

Pertürbe edilmiş dalga fonksiyonu ve enerji zamandan bağımsız Schrödinger dalga denkleminde kullanılabilir:

$$(H_0 + \lambda V)(\psi^{(0)} + \lambda \psi^{(1)} + \dots) = (E^{(0)} + \lambda E^{(1)} + \dots)(\psi^{(0)} + \lambda \psi^{(1)} + \dots).$$
(2.39)

Bu genişlemeden sonra, λ 'nın 0, 1 ve 2'inci kuvvetleri için bu denkklemde uygun işlem yapılarak her iki taraftaki katsayılar denkleştirildiğinde

$$(H_0 - E^{(0)})\psi^{(0)} = 0$$

$$(H_0 - E^{(0)})\psi^{(1)} = (E^{(1)} - V)\psi^{(0)}$$

$$(H_0 - E^{(0)})\psi^{(2)} = (E^{(1)} - V)\psi^{(1)} + E^{(2)}\psi^{(0)}$$
(2.40)

eşitlikleri elde edilir. Buraya kadarki işlemler sadece genel pertürbasyon teorisi sonuçlarıdır. Moller-Plesset teorisinin özel durumuna dönülürse H_0 , bir elektronun Fock operatörlerinin toplamı olarak tanımlanır. F^i , Fock operatörün i. elektrona etki etmiş halidir ve aşağıdaki eşitliği sağlar:

$$H_0 = \sum_i F^i. \tag{2.41}$$

Hartree-Fock determinantı ve yer değiştirmiş determinantlarının hepsi H_0 'ın özfonksiyonlarıdır:

$$H_0 \psi_0 = E_s \psi_s. \tag{2.42}$$

Burada dalga fonksiyonlarının determinantları bütün yer değiştirmelerini içerir. Denklem (2.40)'daki tüm bağıntılar dikkate alınırsa ve ilk durumun her iki tarafı soldan $\langle \psi^{(0)} \rangle$ ile iç çarpım yapılırsa $E^{(0)}$ aşağıdaki gibi elde edilir.

$$\left\langle \psi^{(0)} | H_0 E^{(0)} | \psi^{(0)} \right\rangle \Rightarrow$$

$$\left\langle \psi^{(0)} | H_0 | \psi^{(0)} \right\rangle = E^{(0)} \left\langle \psi^{(0)} | \psi^{(0)} \right\rangle = E^{(0)}$$
(2.43)

 ψ ortonormal olduğundan dolayı, her biri için kendi aralarında iç çarpım yapılabilir ve farklı iki iç çarpım oluşur. H_0 , Fock operatörlerinin toplamı ve $E^{(0)}$ da orbital enerjilerinin toplamı olup

$$E^{(0)} = \left\langle \psi^{(0)} | H_0 | \psi^{(0)} \right\rangle = \sum_i \varepsilon_i$$
(2.44)

ile verilir. $E^{(1)}$ ifadesi için de basit bir matematiksel işlem yeterlidir. Yine denklem (2.40)'daki ilgili kısım $\langle \psi^{(0)} \rangle$ ile iç çarpım yapılırsa

$$\left\langle \psi^{(0)} \Big| H_0 E^{(0)} \Big| \psi^{(1)} \right\rangle = \left\langle \psi^{(0)} \Big| E^{(1)} - V \Big| \psi^{(0)} \right\rangle \implies$$

$$\left\langle \psi^{(0)} \Big| H_0 \Big| \psi^{(1)} \right\rangle - E^{(0)} \left\langle \psi^{(0)} \Big| \psi^{(1)} \right\rangle = E^{(1)} \left\langle \psi^{(0)} \Big| \psi^{(0)} \right\rangle - \left\langle \psi^{(0)} \Big| V \Big| \psi^{(0)} \right\rangle$$

$$(2.45)$$

eşitliği elde edilir. $H_0 \psi^{(0)} = E^{(0)} \psi^{(0)}$ denkleminde H_0 Hermite operatörü olduğundan ($H_0 \psi^{(0)} = \psi^{(0)} H_0$) denklemin sol tarafı 0 olur. Böylece

$$E^{(1)} = \left\langle \psi^{(0)} | V | \psi^{(0)} \right\rangle \tag{2.46}$$

denklemi elde edilir. $E^{(0)}$ ve $E^{(1)}$ in toplamı Hartree-Fock enerjisini verir ($H_0 + V$ tam Hamiltoniyendir):

$$E^{(0)} + E^{(1)} = \left\langle \psi^{(0)} | H_0 | \psi^{(0)} \right\rangle + \left\langle \psi^{(0)} | V | \psi^{(0)} \right\rangle$$

= $\left\langle \psi^{(0)} | H_0 + V | \psi^{(0)} \right\rangle = \left\langle \psi^{(0)} | H | \psi^{(0)} \right\rangle = E^{HF}.$ (2.47)

Yine denklem (2.40)'daki son kısım da $\langle \psi^{(0)} \rangle$ ile iç çarpılırsa

$$\left\langle \psi^{(0)} \middle| H_0 - E^{(0)} \middle| \psi^{(2)} \right\rangle = \left\langle \psi^{(0)} \middle| E^{(1)} - V \middle| \psi^{(1)} \right\rangle + E^{(2)} \left\langle \psi^{(0)} \middle| \psi^{(0)} \right\rangle \implies$$

$$E^{(2)} = \left\langle \psi^{(0)} \middle| V - E^{(1)} \middle| \psi^{(1)} \right\rangle = \left\langle \psi^{(0)} \middle| V \middle| \psi^{(1)} \right\rangle$$

$$(2.48)$$

eşitliği elde edilir. Burada $E^{(2)}$ 'yi tanımlamadan önce $\psi^{(1)}$ 'i bulmaya ihtiyaç vardır. Katsayılar için çözüm, dalga fonksiyonlarının yer değiştirmesinin lineer bir kombinasyonu olarak

$$\psi^{(1)} = \sum_{s} a_s \psi_s \qquad \qquad H_0 \psi_s = E_s \psi_s \qquad (2.49)$$

yazılabilir. Denklem (2.40)'da $\psi^{(1)}$ terimi yerine yazılırsa

$$(H_0 - E^{(0)}) \sum_s a_s \psi_s = (E^{(1)} - V) \psi_0$$
(2.50)

eşitliği elde edilir. (2.50) denkleminin her iki tarafı rasgele seçilmiş ψ_t dalga fonksiyonu ile çarpılıp a_t için çözülebilir:

$$\langle \psi_{t} | (H_{0} - E^{(0)}) | \sum_{s} a_{s} \psi_{s} \rangle = \langle \psi_{t} | (E^{(1)} - V) | \psi^{(0)} \rangle \implies$$

$$\sum_{s} a_{s} \langle \psi_{t} | (H_{0} - E^{(0)}) | \psi_{s} \rangle = E^{(1)} \langle \psi_{t} | \psi^{(0)} \rangle - \langle \psi_{t} | V | \psi^{(0)} \rangle \implies$$

$$\sum_{s} a_{s} \langle \psi_{t} | H_{0} | \psi_{s} \rangle - \langle \psi_{t} | E^{(0)} | \psi_{s} \rangle = E^{(1)} \langle \psi_{t} | \psi^{(0)} \rangle - \langle \psi_{t} | V | \psi^{(0)} \rangle.$$

$$(2.51)$$

Bu denklemin sol tarafı sadece s=t olduğu zaman sıfıra eşit olur;

$$a_{t}(E_{t} - E^{(0)}) = -\left\langle \psi_{t} \middle| V \middle| \psi^{(0)} \right\rangle \implies$$

$$a_{t} = \frac{\left\langle \psi_{t} \middle| V \middle| \psi^{(0)} \right\rangle}{E^{(0)} - E_{t}}.$$
(2.52)

Bu denklem yakın yer değiştirme taban durum enerjilerinin pertürbasyona büyük bir katkı yaptığını gösterir. Benzer şekilde daha güçlü karışık bir durum da pertürbasyona geniş katkı sağlar. Bu katsayılar sonucunda $\psi^{(1)}$

$$\psi^{(1)} = \sum_{t} \left(\frac{\left\langle \psi_t \middle| V \middle| \psi^{(0)} \right\rangle}{E^{(0)} - E_t} \right) \psi_t$$
(2.53)

şeklinde yazılabilir. İkinci mertebe pertürbasyon enerjisi

$$E^{(2)} = \left\langle \psi^{(0)} \left| V \right| \psi^{(1)} \right\rangle = \left\langle \psi^{(0)} \left| V \right| \sum_{t} a_{t} \psi_{t} \right\rangle = \sum_{t} a_{t} \left\langle \psi^{(0)} \left| V \right| \psi_{t} \right\rangle$$
$$= \sum_{t} \left(\frac{\left\langle \psi^{(0)} \left| V \right| \psi_{t} \right\rangle \left\langle \psi_{t} \left| V \right| \psi^{(0)} \right\rangle}{E^{(0)} - E_{t}} \right) = \sum_{t} \frac{\left| \left\langle \psi^{(0)} \left| V \right| \psi_{t} \right\rangle \right|^{2}}{E^{(0)} - E_{t}}$$
(2.54)

olarak bulunur. $E^{(0)}$ enerjisi pertürbe olmamış sistemin enerjisinden küçük olduğu için pay ve payda daima pozitif olur. Pay sadece iki yer değiştirme için sıfır olacaktır. Bu basit yer değiştirmeler Brillion teoremi tarafından oluşturulmuş sıfır ifadesi olarak bilinir. Çünkü Hamiltoniyen sadece bir ve iki elektron terimlerini içerir.
2.4. Yoğunluk Fonksiyonu Teorisi

Bir fonksiyonel, bir değişkenin fonksiyonu olarak tanımlanır. Yoğunluk Fonksiyonu Teorisinde (YFT); fonksiyonel, elektron yoğunluğunun kendisidir. Elektron yoğunluğu, Hartree-Fock kuramına benzer olmayan bir biçimde doğrudan doğruya çok-cisim dalga fonksiyonu ile ilgili bir temel özellik olarak YFT'de kullanılmaktadır. Çok-cisim elektronik dalga fonksiyonu 3N (sistemdeki N tane atomun koordinatları) değişkenin bir fonksiyonu iken, elektron yoğunluğu sadece x, y ve z değişkenlerinin bir fonksiyonudur.

YFT 1920'lerdeki kuantum mekaniği araştırmalarından ve 1950'lerdeki Slater'in kuantum kimyasındaki çalışmalarından türetilmiştir. Yoğunluk fonksiyon yaklaşımı, elektron yoğunluğunun genel fonksiyonları aracılığıyla elektron modelinin bir planlanmasına dayanır. Elektron yoğunluğunun çok yararlı bir fonksiyonel olduğunu bildiren Hohenberg ve Kohn'un ileri sürdükleri bu kurama göre; herhangi bir sistemin yük yoğunluğu, sistemin tüm temel hal özelliklerini saptamaktadır. Bu durumda, çok elektronlu bir sistemin toplam temel hal enerjisi, yoğunluğun bir fonksiyonelidir. Böylece, elektron yoğunluk fonksiyoneli biliniyorsa, elektronlar ve çekirdeklerden oluşan bir sistemin toplam enerjisi de aynı zamanda biliniyor demektir. Hohanberg ve Kohn tam olarak taban durum enerjisi ve yoğunluk için bir fonksiyonel tanımlamışlardır. Bunu Kohn ve Sham'ın çalışmaları izlemiş ve YFT yaklaşımında kullanılan fonksiyonelleri kullanarak elektronik enerjileri parçalara ayırarak enerjiyi aşağıdaki gibi vermişlerdir:

$$E = E^{T} + E^{V} + E^{J} + E^{XC}.$$
 (2.55)

Burada E^T elektronların hareketinden kaynaklanan kinetik enerji, E^V elektronçekirdek çekimi ve çekirdek çiftleri arasındaki itmelerden kaynaklanan potansiyel enerji, E^J elektronlar arasındaki Coulomb itmesinden kaynaklanan terim, E^{XC} ise değiş-tokuş terimini ve elektron-elektron etkileşmelerinin kalan kısmını içerir. Çekirdek-çekirdek itmeleri hariç tüm terimler elektron yoğunluğu ρ 'nun fonksiyonudur. Elektronlar arasındaki Coulomb itmesinden kaynaklanan enerji

$$E^{J} = \frac{1}{2} \iint \rho(\vec{r_{1}}) (\Delta r_{12})^{-1} \rho(\vec{r_{2}}) d\vec{r_{1}} d\vec{r_{2}}$$
(2.56)

şeklinde yazılabilir. $E^T + E^V + E^J$ toplamı, ρ yük dağılımının klasik enerjisinin benzeri terimlerdir. E^{XC} terimi denklem (2.55)'deki terimlerden arta kalan enerji terimidir. Değiş-tokuş enerjisi kuantum mekaniksel dalga fonksiyonlarının antisimetrik olmasından kaynaklanan her elektronun hareketindeki dinamik ilişkidir. Hohanberg ve Kohn, E^{XC} enerjisinin tamamen elektron yoğunluğu tarafından belirlendiğini göstermişlerdir. Spin yoğunluklarının çözümünün bir integrali ve onların mümkün gradyentleridir:

$$E^{XC}(\rho) = \int f(\rho_{\alpha}(\vec{r}), \rho_{\beta}(\vec{r}), \nabla \rho_{\alpha}(\vec{r}), \rho_{\beta}(\vec{r})) d^{3}\vec{r}.$$
(2.57)

 α spin yoğunluğu için ρ_{α} , β spin yoğunluğu için ρ_{β} ve toplam elektron yoğunluğu için $\rho_{\alpha} + \rho_{\beta}$ yazılabilir ve tüm bu spin yoğunlukları ρ ile ifade edilir. Bu eşitlik, değiş-tokuş ve korelasyon terimi olarak parçalara ayrılırsa benzer spin ve karışık spin etkileşmeleri için denklem aşağıdaki gibi yazılabilir:

$$E^{XC}(\rho) = E^{X}(\rho) + E^{C}(\rho).$$
(2.58)

Bütün terimler yine elektron yoğunluğunun fonksiyonudur. Bu bileşenler iki ayrı tip olabilir: Birincisi sadece ρ elektron yoğunluğuna bağlı olan yerel fonksiyonlardır. İkinci tip bileşenler ise hem ρ hem de onun gradyenti $\nabla \rho$ ifadesine bağlı olan yoğunluk gradyent fonksiyonlarıdır. Yerel yoğunluk fonksiyonu (YYF), (Local Density Approximation: LDA), genellikle şu şekilde tanımlanır:

$$E_{LDA}^{X} = -\frac{3}{2} \left(\frac{3}{4\pi}\right)^{1/3} \int \rho^{4/3} d^{3} \overrightarrow{r}.$$
 (2.59)

Burada ρ , r'nin bir fonksiyonudur. Bu eşitlik düzenli bir elektron gazının değiştokuş enerjisiyle tekrar geliştirilmiştir. Ama yine de bir moleküler sistem için zayıftır. Bu LDA'daki değiş-tokuş ve gradyent düzeltme fonksiyonuna dayanılarak, 1988 yılında Becke bu formülü tekrar aşağıdaki gibi düzenlemiştir.

$$E_{Becke88}^{X} = E_{LDA}^{X} - \gamma \int \frac{\rho^{4/3} x^2}{(1 + 6\gamma \sinh^{-1} x)} d^3 \vec{r}.$$
 (2.60)

Burada; $x = \rho^{4/3} |\Delta \rho|$ şeklinde tanımlanır. γ soygazların değiş-tokuş enerjileriyle uyumlu olarak seçilmiş bir parametredir. Becke tanımına göre 0.0042 Hartree 'dir. Benzer şekilde yerel ve gradyent düzeltme fonksiyonları için de tanımlamalar vardır. Örneğin Perdew ve Wang 1991'de onların yerel parçalarının etkileşim fonksiyonu için;

$$E^{C} = \int \rho \varepsilon_{C} (r_{S} (\rho(\vec{r})), \zeta) d^{3} \vec{r}$$

$$r_{S} = \left[\frac{3}{4\pi\rho}\right]^{1/3}, \zeta = \frac{\rho_{\alpha} - \rho_{\beta}}{\rho_{\alpha} + \rho_{\beta}}$$

$$\varepsilon_{C}(r_{S}, \zeta) = \varepsilon_{C}(\rho, 0) + a_{C}(r_{S}) \frac{f(\zeta)}{f''(0)} (1 - \zeta^{4}) + [\varepsilon_{C}(\rho, 1) - \varepsilon_{C}(\rho, 0)] f(\zeta) \zeta^{4}$$

$$f(\zeta) = \frac{\left[(1 + \zeta)^{4/3} + (1 - \zeta)^{4/3} - 2\right]}{(2^{4/3} - 2)}$$
(2.61)

eşitliklerini göstermişlerdir. r_s yoğunluk parametresi ve ζ bağıl spin polarizasyonudur. $\zeta = 0$ durumu α ve β yoğunluklarının eşit, $\zeta = 1$ durumu hepsinin α yoğunluğu, $\zeta = -1$ olması hepsinin β yoğunluğu olduğunu göstermektedir. f(0) = 0 ve $f(\pm 1) = 1$ olarak dikkate alınmıştır. ε_c genel ifadesi hem r_s 'yi hem de ζ 'yı içerir. Son terim karma spinler içindir. $\varepsilon_c(r_s,0)$, $\varepsilon_c(r_s,1)$ ve $-a_c(r_s)$ değerlerinin hesaplanması için kullanılan G fonksiyonu

$$G(r_{S}, A, \alpha_{1}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, P) = -2A(1 + \alpha_{1} r_{S}) ln \left(1 + \frac{1}{2A(\beta_{1} r_{S}^{1/2} + \beta_{2} r_{S} + \beta_{3} r_{S}^{3/2} + \beta_{4} r_{S}^{P+1})\right) (2.62)$$

eşitliğiyle verilir. r_s hariç G'deki tüm değerler Perdew ve Wang tarafından düzenli bir elektron gazı üzerindeki hesaplamalardan seçilmiştir. G'de kullanılan $\varepsilon_{\rm C}(r_{\rm S},0)$, $\varepsilon_{\rm C}(r_{\rm S},1)$ ve $-a_{\rm C}(r_{\rm S})$ değerlerinin her biri farklı değerler kümesidir.

Yalın YFT, değiş-tokuş fonksiyonuyla birlikte korelasyon fonksiyonu tarafından belirlenir. Örneğin BLYP fonksiyonel çiftleri Becke'nin gradyenti-düzeltilmiş değiş-

tokuş (gradient-corrected Exchange) fonksiyoneliyle birlikte Lee, Yang ve Parr'ın gradyenti-düzeltilmiş korelasyon (gradient-corrected correlation) fonksiyoneli olarak bilinir. SCF hesaplamalarına benzer tekrarlamalı bir biçimde öz uyumlu Kohn-Sham hesaplamaları gerçekleştirilir. Bu benzerlikle Hartre- Fock Metodunun yöntemleri Kohn ve Sham tarafından gösterilmiştir.

Hartree-Fock teorisi de bir değiş-tokuş terimi içerir. Son zamanlarda Becke, YFT ve Hartree Fock değiş-tokuş fonsiyonuyla birlikte YFT'nin korelasyonunu da ekleyerek bunların karışımı olan aşağıdaki gibi bir fonksiyon hazırlamıştır.

$$E_{Hybrid}^{XC} = c_{HF} E_{HF}^X + c_{DFT} E_{DFT}^{XC}.$$
(2.63)

Burada c'ler sabitlerdir. Bu denklem yoluyla Becke'nin üç parametreli fonksiyonu tekrar tanımlanabilir:

$$E_{B3LYP}^{XC} = E_{LDA}^{X} + c_0 (E_{HF}^{X} - E_{LDA}^{X}) + c_X \Delta E_{B88}^{X} + E_{VWN3}^{C} + c_C (E_{LYP}^{C} - E_{VWN3}^{C}).$$
(2.64)

Burada c_0 parametresi YFT ve Hartree Fock'un yerel değiş-tokuş fonksiyonunun herhangi bir karışımı için kullanılmıştır. Ayrıca c_X ile gösterilen Becke'nin LDA değiş-tokuşu için gradyent düzeltmesi içerir. VWN3 yerel korelasyon (local correlation) fonksiyonu olarak kullanılmıştır. c_c parametresi ve LYP korelasyon düzeltmesiyle elverişli duruma getirilir. B3LYP fonksiyonunda parametre değerleri atomlara ayırma enerjisi (atomizasyon), iyonlaşma potansiyeli, proton ilgisi (affinity), ilk sıra atom enerjilerine sabitlenerek Becke tarafından belirlenmiştir $(c_0 = 0.20, c_X = 0.72, c_C = 0.81)$. Becke VWN3 ve LYP'den ziyade orijinal çalışmalarında Perdew-Wang'ın 1991'de açıkladıkları korelasyon fonksiyonunu kullanmıştır. Becke tarafından kullanılan aynı katsayılar Hartre Fock ve YFT de değiş-tokuş fonksiyonu için iyi sonuçlar verir. YFT hesaplamaları E^{XC} değerini içerir. Bu terimin değeri YFT için analitik olarak hesaplanamaz. Bu yüzden nümerik integrasyon yoluyla hesaplanır. Burada sunulan teorik bilgiler [28] nolu kaynakta daha geniş sunulmuştur. Orada verilen literatür bilgileri ile teorik geri planın gelişimi incelenebilir.

2.5. Hesaplamalarda Kullanılan Programlar

Nano ölçekte hesaplamalı bilimde yaygın oarak kullanılan Gaussian [29] standart bir simülasyon paketi durumundadır. Fizik ve kimya alanında çalışma yapan araştırma grupları tarafından yaygın olarak kullanılmaktadır. Ab-initio hesaplamalara dayalı elektronik yapı programıdır. Ab-initio hesaplamalarda temel teorik fiziksel nicelikler kullanılarak yapının enerjisi tahmin edilir. Sistemin genel bir geometrisi belirlenerek optimizasyon yaptırılır. Bölüm 2.1-2.4'de verilen üzerinden hesaplamalar yapılır. Sistemlerimizin hesaplanmasında, Ab-initio yöntemlerden B3LYP fonksiyoneli ve 6-311++g** baz seti kullanıldı. Bu yöntem bor içerikli sistemler için elverişlidir [4-8].

Denklem (2.24)'de en genel hali verilen baz setleri kapalı ve açık kabuk orbitallerinin tanımlanması açısından çeşitlendirilmektedir. Açık kabuk orbitallerini tanımlamak için kullanılan gaussian baz setleri ikili zeta (m-npG) ve üçlü zeta (m-nplG) olarak sınıflandırılır. Burada m, n ve p sıfırdan farklı pozitif tam sayılar, G gaussian fonksiyonunu ifade etmektedir.

Sınırlandırılmış baz setlerinin kullanılması, çekirdekten uzakta yer alan elektronların bulunduğu sistemlerde yetersiz kalmaktadır. Burada kullanılan 6-311++g** baz setinde "diffuse baz kümeleri" de bulunmaktadır. Bunlar "+"veya "++" işaretleriyle gösterilmektedir. Hidrojen atomu için "++" diğer ağır atomlar için "+" ile gösterilir.

Polarizasyon fonksiyonları baz kümelerine katılarak hesaplamalar daha hassas bir hale getirilir. Setin sonunda "*" eklenmesiyle d, "**" eklenmesiyle de p orbitali hesaba katılmış olur.

Kullanılan baz setinde; 6 rakamı 6 gaussian s kabuğunu hesaplamak için, 3 rakamı her bir sp kabuğu için GTO (Gaussian Type Orbital: Gaussian Tipi Orbital) sayısını ve 1'ler de diğer sp kabukları için GTO'ların sayısını, ilk "*" d, ikinci "*" p kabuğunu hesaba katmaktadır.

Chemcraft [14] ara yüzü ise; Gamess, NWChem, Gaussian gibi programlar için geliştirilen bir görselleştirme programıdır. Hesaplamalar için yeni işler hazırlamada ve hesaplama sonuçlarının görüntülenmesinde oldukça kullanışlıdır. Hesaplanan molekül üç boyutlu olarak ve hesaplama sonuçları da metin formatında

görüntülenebilmektedir. Hesaplanan sistemlerin optimizasyon adımları, bu adımlar boyunca üç boyutlu olarak molekülün geometrik değişimi, titreşim modlarının hareketi, moleküler orbitalleri, atomların yükleri, bağ açıları, bağ uzunlukları, dipol momentleri, simetri grupları bu program ile görüntülenebilmektedir.

2.6. Hesaplanan Nicelikler

İncelenen sistemlerin atom başına ortalama bağlanma enerjileri, HOMO en yüksek dolu orbital ve LUMO en düşük enerji seviyesindeki boş orbital enerjileri, HOMO-LUMO enerji aralıkları, ikinci enerji farkları, ayrışma enerjileri, Vertical (doğrudan) elektron ilgisi (VEA: Vertical Elektron Affinity), Vertical (doğrudan) iyonlaşma enerjisi (VIP: Vertical Ionization Potential) enerjileri, elektronegatiflik, kimyasal sertlik hesaplamaları bu kısımda verilen denklemler yardımıyla yapıldı. Ayrıca yapılara ilişkin frekanslar ve simetri gruplarının oluşumuyla ilgili bilgiler verildi.

Moleküller genelde, molekülü oluşturan atomlar arasında elektron paylaşımı sonucunda meydana gelirler. E_i (i = 1, 2, 3, 4...), bir molekülü oluşturan atomlarla ilgili enerjiler olmak üzere, molekülün enerjisinin $E_m < \sum_i E_i$ olduğu görülür. Aradaki bu farka bağlanma enerjisi denir. Atom başına ortalama bağlanma enerjisi:

ByN6-y yapıları için;

$$E_{b}(eV/atom) = \frac{E[B_{y}N_{6-y}] - yE[B] - (6-y)E[N]}{6}$$
(2.74-a)

Tix yapıları için;

$$E_{b}(eV/atom) = \frac{E[Ti_{x}] - xE[Ti]}{x}$$
(2.74-b)

Ti_xN₂ yapıları için;

$$E_{b}(eV/atom) = \frac{E[Ti_{x}N_{2}] - xE[Ti] - 2E[N]}{x+2}$$
(2.74-c)

Ti₁B_yN_z yapıları için;

$$E_{b}(eV / atom) = \frac{E[Ti_{x}B_{y}N_{z}] - xE[Ti] - yE[B] - zE[N]}{x + y + z}$$
(2.74-d)

denklemleri kullanılarak hesaplandı. HOMO-LUMO enerji aralığı;

$$gap_{HL}(eV) = E[HOMO] - E[LUMO]$$
(2.75)

denklemi ile hesaplandı. Komşu yapılarına göre bağıl olarak yüksek kararlılığın belirlendiği Ti_x , Ti_xN_2 ve $Ti_1B_yN_z$ sistemleri için toplam enerji üzerinden hesaplanan ikinci enerji farkı;

$$\Delta^{2} E(eV) = E[Ti_{x-1}] + E[Ti_{x+1}] - 2E[Ti_{x}]$$
(2.76-a)

$$\Delta^{2} E(eV) = E[Ti_{x-1}N_{2}] + E[Ti_{x+1}N_{2}] - 2E[Ti_{x}N_{2}]$$
(2.76-b)

Ti₁B_yN_z yapıları için;

$$\Delta^{2} E(eV) = E[Ti_{1}B_{y}N_{z-1}] + E[Ti_{1}B_{y}N_{z+1}] - 2[Ti_{1}B_{y}N_{z}]$$
(2.76-c)

denklemleriyle hesaplandı. N2 molekülünün yapıdan ayrışması için gerekli enerji;

$$E_{Ad-N_{2}} = E[Ti_{x}N_{2}] - E[Ti_{x}] - E[N_{2}]$$
(2.77)

denklemi ile hesaplandı. Bu formül farklı ayrışma kanalları için de uygun forma dönüştürülerek kullanıldı.

İyonlaşma enerjisi, bir atom ya da molekülden elektron koparmak için verilmesi gereken enerjidir. Molekül elektron verdikten sonra geometrisini bir miktar değiştirmekte ve daha düşük enerjili bir hale geçmektedir. İyonlaşma olayı eğer molekül geometrisini değiştirmeden sadece elektronun molekülden atılması ile oluyorsa aynı geometri üzerinde olduğumuz için buna VIP denir ve

$$VIP(eV) = E(optimize olmuş nötr geometrinin katyonik durumu) - E(optimize olmuş nötr durum) (2.78)$$

denklemiyle hesaplanır. Yüksüz bir atomun elektron kazanarak (-1) yüklü iyon hale gelmesi sırasında açığa çıkan enerjiye o atomun elektron ilgisi denir. Elektron ilgisi, elektronun atoma ne kadar sağlam bağlandığını gösterir ve elektron ilgisi arttıkça eklenen atoma elektron daha sıkı bağlanır. Yapıya bir elektron ilave edildiğinde geometrisi değişmeden kalıyorsa buna VEA denir ve

VEA(eV) = E(optimize olmuş nötr durum) - E(optimize olmuş nötr geometrini n anyonik durumu)(2.79)

formülüyle hesaplanır. Kimyasal reaksiyona giren iki yapıdan hangisinin elektron vereceği, hangisinin ise elektron alacağı sadece iyonlaşma enerjisi ya da elektron ilgisiyle belirlenememektedir. Hem iyonlaşma enerjisi hem de elektron ilgisini içeren elektronegatiflikle bu özellik belirlenebilmektedir [60] ve

denklemiyle bulunur. Kimyasal sertlik, molekülün HOMO seviyesinden elektron kopması ve LUMO seviyesine elektron yerleşmesi ile ilgili bir nicelik olup, bu ikisinin farkının ortalaması ile elde edilir [61]. Başka bir deyişle molekülün kimyasal olarak tepkimeye girme yatkınlığının bir ölçüsüdür ve

$$\eta = \frac{\text{VIP} + \text{VEA}}{2} \tag{2.81}$$

denklemiyle tespit edilir. Burada analizler için kullanılan eşitlikler kısaca verildi. Bulgular sonucunda ulaşılan mekanizmaların aydınlatılmasında oldukça kullanışlıdırlar [4-8, 63, 64].

Bir moleküldeki atomların birbirine göre yerleşim durumları tam olarak sabit olmayıp, moleküldeki bağlar etrafında çok sayıda titreşim ve dönme modları olduğundan değişiklik gösterir. Çok atomlu moleküller için, böyle titreşimlerin sayısını, özelliğini ve bu titreşimlerle soğrulan enerji arasındaki ilişkiyi açıklamak zordur.

Moleküllerin titreşim sayıları molekülü oluşturan atom sayısına bağlıdır. Molekülü oluşturan atomların sayısını N olarak kabul edersek sistemin uzaydaki konumunu belirlemek için üç koordinat gerekir ve her bir koordinat bir serbestlik derecesine karşılık gelir. N atomlu bir sistem 3N tane harekete sahiptir ve serbestlik derecesi 3N olur. Titreşim hareketinin sayısını bulabilmek için dönme ve öteleme hareketlerini

çıkarmak gerekir. Her ikisinden toplam 6 serbestlik derecesi geleceğinden titreşim sayısı 3N-6 olur. Bu tez çalışmasında hesaplanan sistemlerle ilgili tablolarda bu frekans değerlerinden sadece en düşük ve en yüksek titreşim frekansları verilmiştir.

Çalışılan kompleklerin simetri analizleri de yapıldı. Cisme veya moleküle bir hareket verildikten sonra eşdeğer veya özdeş konum elde ediliyorsa bu harekete simetri işlemi adı verilir. Simetri elemanları bir eksen, düzlem, nokta gibi geometrik niceliktir. Simetri işlemleri bu simetri elemanları temel alınarak uygulanır. Bir molekülün simetri özellikleri dönme gibi mümkün bazı simetri işlemleriyle belirlenmektedir. Böyle bir simetri işlemi sırasında uzaydaki her bir nokta bütün mesafeleri sabit tutarak başka bir noktaya dönüştürülmektedir. İşlemden önce ve sonra cisim ayırt edilemez kalmaktadır. Dönme simetri ekseni bulunmayan moleküller nokta gruplarına aittirler. C1: Bu grup E özdeşlik işleminden başka hiçbir simetri elemanına sahip değildir. C_s: Tek simetri elemanı bir ayna düzlemidir. C_i: Tek simetri elemanı i tersinme simetrisi merkezidir. Cn: Tek simetri elemanı olarak $(n \neq 1$ olmak üzere) n-katlı dönme eksenli moleküller. Sn: Tek simetri elemanı olarak çift sayıda (m=2 ile başlamak kaydıyla n=2m) dönme-yansıma ekseni şeklinde bir simetri elemanına sahip olan moleküller. Cnh: n>1 mertebeli bir dönme ekseni $(C_{1h}\equiv C_S)$ ve buna dik bir (yatay) ayna düzlemine sahip moleküller (yatay terimi dönme ekseninin dikey olarak alınması geleneğinden kaynaklanmaktadır). 2n simetri işlemleri C_n dönme grubu ve bunun σ_h yansımasıyla bileşiminden (S_n = σ_h C_n) kaynaklanır [58].

3. BULGULAR

Bu tez kapsamında, incelenen sistemlerle ilgili elde edilen bulguların yapı ve enerji analizleri sunulmaktadır. Optimizasyonlar, Gaussian paket programı, sonuçların görsel çizimleri Chemcraft programı ve verilerin analizleri ise yöntem kısmında verilen denklemler yardımıyla yapıldı. Bu yapılarla ilgili; spin çarpanları (SÇ), elektronik durumlar (ED), nokta gruplar (NG), toplam enerjiler (E_{tot}), bağlanma enerjileri (E_b), HOMO ve LUMO enerjileri, HOMO-LUMO enerji aralıkları (gap_{HL}), en düşük ve en yüksek frekans değerleri (f_{min} ve f_{max}), bağ uzunlukları, toplam atomik yükler, iyonlaşma enerjisi, elektron ilgisi gibi nicelikler incelendi. Yapı ve enerji analizleri sonucunda gözlenen davranışların altındaki mekanizmalar tartışıldı.

3.1. İki Atomlu Sistemler

Hesaplamalara Ti, B ve N atomlarının farklı spin çarpanlarındaki izomerlerin enerji analizleri yapılarak başlandı. Tek atomlu durum için yapılan bu hesaplamalar sonucunda Tablo 3.1'de görüldüğü gibi Ti atomunun 1, 3 ve 5 spin çarpanlarını incelediğimizde spin çarpanı 3 iken en kararlı halde bulunduğu görülmektedir. N atomunun 2, 4 ve 6 spin çarpanlarına bakıldığında spin çarpanı 4 iken daha düşük enerjili olduğu görülmektedir. B atomuna baktığımızda ise 2, 4 ve 6 spin çarpanları içinde spin çarpanı 2 iken diğer spin çarpanlarına göre daha düşük enerjili olduğu görülmektedir. Spin çarpanı, spin manyetik kuantum sayısı kullanılarak hesaplanır. Manyetik kuantum sayısı $\pm 1/2$ ve $\pm 1/2$ değerlerinde spin yukarı ve spin aşağı olmak üzere iki durumda bulunabilir. S, bir atomdaki spin kuantum sayılarının toplamı olmak üzere (S= Σ m_s), spin çarpanı 2|S|+1 ile hesaplanır.

Elektronlar atomlara kuantum sayıları artırılarak yerleştirilir. Aynı atomda birden fazla elektronun bulunması durumunda düşük kuantum sayısından itibaren doluş sırasının belirlenmesi gerekir. Bunun için ilk olarak n, l ve m_l nin en küçük değerleri (sırasıyla 1, 0 ve 0) ile başlanır. m_s, m_l, l ve n sırasına göre kuantum sayıları artırılırken geride kalan elektronlar için Pauli dışarlama ve Hund kuralına göre aşağıdaki gibi belirlenir:

Elektronlar, atoma en düşük toplam enerji verecek şekilde orbitallere yerleştirilir.
 Buna göre n ve l nin en küçük değerleri önce doldurulmalıdır. Her bir sette yer alan orbitaller (p, d) aynı enerjiye sahip olduklarından, m₁ ve m_s için sıralama belirsizdir.

2. Pauli dışarlama ilkesine göre; bir atomdaki her bir elektron için tek bir kuantum seti mümkündür. Yani bir atomda dört kuantum sayısı aynı olan elektron bulunamaz. En azından bir kuantum sayısı diğerlerinden farklı olmak zorundadır.

3. Hund'un çoklu kuralına göre; elektronlar orbitallere en fazla toplam spin ya da en fazla sayıda paralel spin verecek şekilde yerleştirilmelidir. Elektrostatik itme nedeniyle aynı orbitaldeki iki elektron farklı orbitaldeki, iki elektrondan daha yüksek enerjiye sahiptir.

Bu kurallar çerçevesinde Ti, N ve B atomlarının spin çarpanlarını belirleyecek olursak; Hund'un çoklu kuralına göre en fazla sayıda paralel spin olabilmesi için orbitallerdeki tüm eşleşmemiş elektronların +1/2 veva -1/2 spin manyetik kuantum sayısına sahip olması gerekir. Ti'nin atom numarası 22 olup, [Ar] 3d² 4s² elektron konfigürasyonuna sahiptir ve d elektronlarında 2 tane eşleşmemiş elektron bulunur. Her iki elektronun da +1/2 veya -1/2 spin manyetik kuantum sayısına sahip olması gerekmektedir. Bu durumda S=(+1/2)+(+1/2)=1 veya S=(-1/2)+(-1/2)=-1 olacaktır. Spin çarpanında S mutlak değer olarak alındığından her durumda spin çarpanı 2|S|+1=2x1+1=3 olacaktır. N'nin atom numarası 7 ve elektron konfigürasyonu da $1s^2$ 2s² 2p³'dür. N'nin p seviyesinde üç eşleşmemiş elektron vardır ve bu eşleşmemiş elektronların en fazla paralel spini verecek şekilde dizildiği düşünülürse; S=(+1/2)+(+1/2)+(+1/2)=3/2 veya S=(-1/2)+(-1/2)+(-1/2)=-3/2 olur ve bu surumda spin çarpanı 2|S|+1=2x(3/2)+1=4 olacaktır. B'nin atom numarası 5'dir ve $1s^2 2s^2 2p^1$ elektron konfigürasyonuna sahiptir. B içinde benzer şekilde elektronların en fazla paralel spini verecek şekilde dizildiği düşünülürse p seviyesindeki 1 eşleşmemiş elektrondan +1/2 veya -1/2 değeri gelir. Bu durumda S=(+1/2) veya S=(-1/2) olur ve spin çarpanı 2|S|+1=2x(1/2)+1=2 olarak bulunur. Çok atomlu durumlar için yapılan analizlerde bu düşük enerjili spin durumlarının elde edilen değerleri kullanıldı.

Atom	SC	E _{tot}	HOMO	LUMO	gap _{HL}
7 ttom	ЪÇ	(eV)	(eV)	(eV)	(eV)
Ti	1	-23110.540	-5.159	-2.693	2.466
	3	-23112.032	-5.744	-3.257	2.487
	5	-23112.013	-8.286	0.534	8.820
Ν	2	-1483.012	-8.183	-6.247	1.936
	4	-1485.773	-9.793	1.564	11.357
	6	-1468.384	-1.828	0.700	2.528
В	2	-671.105	-4.833	-3.137	1.696
	4	-667.499	-5.027	-3.219	1.808
	6	-480.254	-3.569	-0.786	2.783

Tablo 3.1. Ti, N, B İçin Hesaplanan Nicelikler

Ti, B ve N atomlarının iki atomlu molekül durumları için hesaplamalar yapıldı. Kullanılan modelin geçerliliğini görmek için iki atomlu moleküller üzerinden bu sistemlerin sonuçları diğer çalışmalarla karşılaştırılarak incelendi. İki atomlu sistemler için yapılan enerji analizleri, bağ uzunlukları, frekansları Tablo 3.2'de görülmektedir. Farklı spin çarpanlarındaki izomer hesaplamalarında; Ti₂; 3, TiN; 2, TiB; 6, N₂; 1, BN; 3, B₂; 5 spin durumunda enerjilerinin en düşük olduğu görüldü. Burada dikkat edilirse B₂ molekülünün yüksek spin çarpanında daha düşük enerjide olduğu görülmektedir. Deneysel olarak N2'nin bağ uzunluğu 1.10 Å ve bağ enerjisi 9.76 eV ölçülmüştür [58]. N₂ nin bizim hesaplamış olduğumuz bağ uzunluğu 1.10 Å, bağ enerjisi 9.60 eV olup bu sonuçla uyum içerisindedir. B₂ molekülünün deneysel bağ uzunluğu 1.59 Å, enerjisi de 2.99 eV'dur [58]. Bizim hesaplamalarımıza göre spin çarpanı 2 iken yani düşük enerjili durumda bağ uzunluğu 1.64 Å ve bağ enerjisi 2.68 eV olarak bulundu. Deneysel sonuca yakın olduğu görüldü. B2 ve N2 molekülleri kendi aralarında kıyaslandığında N₂ molekülünün bağ enerjisinin oldukça yüksek olduğu görülmektedir. BN molekülünün bağ uzunluğu 1.28 Å ve bağ enerjisi 3.99 eV olarak bulunmuştur [30]. BN molekülün bizim hesaplamış olduğumuz bağ uzunluğu 1.27 Å ve bağ enerjisi 4.65 eV olup bağ uzunluğunun deneysel sonuçla uyum içersinde olduğu görülmektedir.

	SC	E _{tot}	E _b	E _b	Uzaklık	HOMO	LUMO	gap _{HL}	frekans
	зÇ	(eV)	(eV)	(eV/atom)	(Å)	(eV)	(eV)	(eV)	(cm^{-1})
Ti ₂	1	-46224.588	-0.525	-0.262	1.804	-2.920	-2.010	0.910	594
	3	-46225.699	-1.635	-0.818	1.877	-3.807	-1.965	1.841	516
	5	-46224.354	-0.290	-0.145	1.860	-2.836	-1.820	1.016	591
	7	-46224.457	-0.394	-0.197	2.005	-3.223	-2.223	1.000	367
TiN	2	-24602.824	-5.020	-2.510	1.557	-4.884	-2.901	1.983	1146
	4	-24601.376	-3.572	-1.786	1.738	-5.005	-2.081	2.924	889
	6	-24599.784	-1.979	-0.990	2.019	-4.520	-1.890	2.630	573
TiB	2	-23784.618	-1.481	-0.741	1.833	-4.472	-2.652	1.820	701
	4	-23784.992	-1.855	-0.927	1.931	-4.764	-2.504	2.260	588
	6	-23785.531	-2.395	-1.197	2.043	-4.720	-1.834	2.887	621
N_2	1	-2981.143	-9.597	-4.798	1.096	-11.999	-1.030	10.969	2444
	3	-2973.850	-2.304	-1.152	1.278	-5.962	-4.141	1.821	1559
	5	-2972.279	-0.733	-0.366	1.598	-8.349	-0.177	8.171	853
BN	1	-2160.703	-3.824	-1.912	1.264	-8.558	-6.637	1.921	1763
	3	-2161.532	-4.654	-2.327	1.320	-8.981	-1.351	7.631	1567
	5	-2157.790	-0.912	-0.456	1.581	-4.626	-2.347	2.278	860
B_2	1	-1343.826	-1.616	-0.808	1.641	-5.970	-4.628	1.343	956
	3	-1344.651	-2.441	-1.220	1.745	-6.524	-4.599	1.925	812
	5	-1344.886	-2.676	-1.338	1.519	-6.914	-0.648	6.266	1280
	7	-1336.357	5.854	2.927	1.979	-4.541	-2.702	1.840	555

Tablo 3.2. Ti₂, TiN, TiB, N₂, BN, B₂ Molekülleri İçin Hesaplanan Nicelikler

Ti₂ için deneysel olarak atom başına bağlanma enerjisi 1.540 eV ve bağ uzunluğu da 3.677 Å olarak bulunmuştur [62]. 6-311++g** baz setiyle hesapladığımız atom başına bağlanma enerjisi 1.635 eV ve bağ uzunluğu da 1.877 Å olarak bulundu. Ti₂ için farklı baz setleriyle hesaplanmış atom başına bağlanma enerjileri ve bağ uzunlukları Tablo 3.3'de verilmiştir. Seçilen baz seti ile N₂, B₂, BN ve Ti₂ molekülleri için hesaplanan nicelikler deneysel değerlere yakındır.

Tablo 3.3. Ti₂ İçin Hesaplanan Nicelikler

Baz Seti	E_b (eV/atom)	Uzaklık (Å)
6-311++g**	-1.635	1.877
CEP-121G	-1.434	1.853
3-21G	-2.349	1.842
6-311G	-1.231	1.809
Exp. ^[52]	1.54±0.19	3.677
$HF^{[61])}$	0.320	3.720
LDA [64]	1.917	3.660

Daha önce yapılan bor çalışmalarında [4-8, 63, 64] bu baz setinin daha iyi sonuçlar vermesi sebebiyle bu tez çalışmasında da tercih edilmiştir. B ve N atomlarında daha uyumlu olması, B topakları için iyi sonuç vermesi ve ilerde yeni çalışmalarla karşılaştırılabilir olması sebebiyle incelenen bütün sistemlerde aynı baz seti kullanıldı.

Ti, B ve N atomlarını kullanarak oluşturulan iki atomlu sistemlerin atomlar arasındaki etkileşmeleri ve bağlanma enerjileri hakkında bir fikir sahibi olabilmek için atomlar arası uzaklığın fonksiyonu olarak bağlanma enerjilerinin nasıl değiştiğine bakıldı (Şekil 3.1). Atom başına bağlanma enerjisi düşükten yükseğe (mutlak değer olarak büyükten küçüğe) N₂>TiN>BN>Ti₂>TiB>B₂ olarak değiştiği gözlendi. N bulunan molekülde atom başına bağlanma enerjisinin arttığı görülmektedir. Azot atomunun 5 tane değerlik elektronu vardır. Çiftlenmemiş 2p³ elektronları sayesinde σ ve π bağlarını rahatlıkla yapabilmektedir. Kendi aralarında üçlü bağ yapabildiği için bağlanma enerjisi büyüktür. Şekil 3.1'de de görüldüğü gibi en düşük bağlanma enerjisi N₂'ye aittir. N₂ molekülünde p seviyesindeki tüm elektronlar eşleşmiştir ve çok kararlı bir molekül meydana gelmiştir.

Şekil 3.1. Ti₂, TiN, TiB, N₂, BN, B₂ Moleküllerinin Uzaklığa Bağlı Olarak Hesaplanmış Atom Başına Bağlanma Enerjileri

3.2. Bor-Azot Sistemleri: B_yN_{6-y} (y≤6) ve (BN)_y (y≤12) Yapıları

Bu kısımda B_yN_{6-y} (y≤6), (BN)_y (y≤12) topaklarının optimizasyonu yapıldı. B_yN_{6-y} (y≤6) topakları için yapılan hesaplamalarda N₆ halka yapısından yola çıkılarak sırasıyla halkadaki N atomları yerine B atomu yerleştirilerek optimizasyonlar tamamlandı. Ancak halka yapıda sınırlamaya gidilmediği için geometride serbest klan sistem farklı yapılara gidebilmektedir. Optimizasyonlar sonucunda elde edilen geometriler Şekil 3.2'de verildi. Parantez içindeki sayılar spin çarpanlarını göstermektedir. Düşük enerjili yapılar B₄N₂ yapısı dışında düşük spin çarpanında görüldü.

Şekil 3.2. B_yN_{6-y} (y≤6) yapılarının optimizasyonu yapılmış geometrileri

İzomerler hesaplanırken halkadaki B atomlarının farklı yerlerde ve farklı spin çarpanlarındaki durumları göz önünde bulunduruldu. B atomu katıldıkça halka yapının simetrik görünümü bozuldu. Tüm N atomlarının yerini B aldığında, yani B₆ yapısında ise, tekrar halka yapının korunduğu görülmektedir. B_2N_4 -II yapısının halka yapıyı tamamen bozarak zincir geometriye dönüştüğü gözlendi. Bu tipik davranışın halka yapıdan zincir geometriye dönüşümündeki enerji adımları Şekil 3.3'te görülmektedir. Bu yapıda N atomlarının B₂ molekülündeki borlara moleküler olarak (N₂) bağlanmayı tercih ettiği görülmektedir. B sayısı arttıkça yapı içerisinde B atomları kendi aralarında bağ yapmaya daha yatkın davranmaktadır. Çalışmamızın asıl amacı sadece özel halka yapıları incelemek olmadığı için 6 atomlu sistemler burada prototip olarak çalışıldı.

Bu kısımda incelenen yapılar için hesaplanan bazı nicelikler Tablo 3.4'de verildi. Yapıların nokta gruplarına bakıldığında B_2N_4 -VI yapısının C_{2h} , B_4N_2 -I yapısının C_{2V} ve diğer yapılarında C_8 nokta grubuna sahip olduğu görüldü. Elde edilen yapılardan N₆-I, N₆-II, B₁N₅-II, B₂N₄-IV, B₂N₄-V, B₃N₃-II, B₃N₃-V, B₃N₃-VI, B₄N₂-II, B₄N₂-III, B₄N₂-III, B₄N₂-III, B₄N₂-III, B₄N₂-III, B₄N₂-III, B₄N₂-III, B₄N₂-VI, B₅N₁-II ve B₆-I topaklarında negatif frekansa rastlandı.

 B_yN_{6-y} (y≤6) yapıları için hesaplanan atom başına ortalama bağlanma enerjilerine baktığımızda (Şekil 3.4) değerlerin y≤3'e kadar artarken y>3'ten sonra azaldığı görülmektedir. B_3N_3 yapısında B ve N atomları halka yapıya bir N bir B atomu olacak şekilde yerleştiğinde yapının diğer B_yN_{6-y} yapılarına göre daha düşük bağlanma enerjisine sahip olduğu görüldü (Şekil 3.4-a). Yapı içerisinde B atomunun N atomuna kıyasla sayısal oran bakımından %50'den daha az olduğu bölgede, bağ enerjisinde değer olarak artışa sebep oluyor. Altı atomlu bu topaklarda eşit sayıda B ve N olması en karalı komplekse karşılık geliyor. Bu orandan sonra ise B katkılanmasının artırılması ters etki yapmaktadır.

Şekil 3.3. B_2N_4 -II Yapısının Halka Yapıdan Zincir Yapıya Geçişindeki Optimizasyon Adımları

	6 11	150	ED	NC	E _{tot}	E _b	HOMO	LUMO	gap _{HL}	f_{min}	f_{max}
У	0-y	150	ЕD	NU	(eV)	(eV/atom)	(eV)	(eV)	(eV)	(cm^{-1})	(cm^{-1})
0	6	Ι	$^{1}A'$	Cs	-8934.637	-3.333	-8.728	-4.753	3.976	$731^{(3)}$	1351
0	6	II	³ A"	C_{S}	-8933.844	-3.201	-7.670	-3.709	3.961	319 ⁽¹⁾	1277
1	5	Ι	$^{1}A'$	C_{S}	-8122.343	-3.729	-8.128	-4.346	3.782	346	1592
1	5	II	³ A"	C_{S}	-8120.886	-3.486	-6.338	-3.507	2.831	$205^{(1)}$	1479
2	4	Ι	$^{1}A'$	C_S	-7311.024	-4.287	-7.752	-3.547	4.205	398	1634
2	4	II	^{3}A	C_{S}	-7309.954	-4.109	-5.755	-3.864	1.891	85	1940
2	4	III	³ A'	C_{S}	-7309.372	-4.012	-6.288	-2.941	3.346	321	1693
2	4	IV	$^{1}A'$	C_{S}	-7308.892	-3.932	-7.754	-3.982	3.773	356 ⁽¹⁾	1513
2	4	V	$^{1}A'$	C_{S}	-7308.477	-3.862	-8.254	-3.908	4.345	$286^{(1)}$	1646
2	4	VI	³ A'	C_{2h}	-7307.675	-3.729	-7.102	-1.828	5.275	198	1563
3	3	Ι	^{1}A	C_{S}	-6500.651	-5.003	-8.678	-3.358	5.320	505	1669
3	3	II	³ A"	C_{S}	-6497.650	-4.503	-5.609	-2.240	3.369	$254^{(1)}$	1454
3	3	III	$^{1}A'$	C_{S}	-6496.320	-4.281	-7.171	-3.760	3.411	315	1740
3	3	IV	³ A"	C_{S}	-6495.348	-4.119	-6.102	-2.764	3.337	225	1565
3	3	V	$^{1}A'$	C_{S}	-6492.952	-3.720	-6.848	-4.262	2.586	$226^{(1)}$	1636
3	3	VI	³ A'	C_{S}	-6492.885	-3.708	-7.301	-2.981	4.320	$325^{(1)}$	1443
4	2	Ι	³ A"	C_{2V}	-5683.090	-4.521	-6.376	-3.142	3.235	395	1646
4	2	II	^{3}A	C_2	-5682.323	-4.393	-5.313	-2.785	2.527	$290^{(1)}$	1516
4	2	III	$^{1}A'$	C_{S}	-5682.016	-4.341	-5.615	-4.288	1.327	373 ⁽¹⁾	1676
4	2	IV	^{1}A	C_{S}	-5681.505	-4.256	-4.846	-2.897	1.949	157	1496
4	2	V	³ A"	C_S	-5678.754	-3.798	-6.962	-3.487	3.476	185	1450
4	2	VI	$^{1}A'$	C_{S}	-5677.297	-3.555	-6.087	-4.036	2.051	$20^{(1)}$	1743
5	1	Ι	$^{1}A'$	C_{S}	-4866.943	-4.274	-6.992	-3.711	3.281	228	1558
5	1	II	³ A"	C_{S}	-4865.517	-4.036	-5.893	-2.886	3.007	313 ⁽¹⁾	1566
6	0	Ι	^{1}A	C_{S}	-4048.960	-3.722	-6.411	-4.720	1.691	731 ⁽³⁾	1351
6	0	II	³ A'	C_S	-4047.701	-3.512	-5.505	-3.486	2.018	319	1277

Tablo 3.4. B_yN_{6-y} (y≤6) Yapıları İçin Hesaplanan Nicelikler

Bu yapıların HOMO-LUMO enerji aralıklarına baktığımızda da yine aynı yapının (B₃N₃) enerji aralığının diğer yapılara göre daha büyük olduğu görülmektedir (Şekil 3.4-b). Bor hibritleşme yaparak 3 eşleşmemiş elektrona sahip olarak N atomunun p seviyesindeki üç eşleşmemiş elektron formuna benzer hale gelebilmektedir. Bu sebeple B ve N atomları B-N şeklinde sıralı olarak bağ yapmayı tercih etmekte ve bu şekilde kararlı bir yapı oluşturmaktadırlar (Şekil 3.2). B atomları birbirleriyle bağ yapmakta ve N atomlarını birbirlerinden ayırarak düzlemsel geometride bulunmaktadır.

Şekil 3.4. B_yN_{6-y} (y≤6) Yapılarının Atom Başına Ortalama Bağlanma Enerjileri (a) ve HOMO-LUMO Enerji Aralıkları (b)

BN özel halka yapıları BN nanotüp yapılara temel oluşturması sebebiyle literatürde çalışılan konulardandır [25, 28, 30]. İncelediğimiz eşit sayıda B ve N (%50-%50) içeren topağın daha kararlı çıkması bu çalışmaların temasıyla uyum içersindedir. Bu sebeple, $(BN)_y$ (y≤12) yapılarında n=4'den itibaren özel olarak halka yapıları da inceledik. Optimizasyon sonucu ulaşılan geometrileri Şekil 3.5'de verilmiştir. Bu

yapılardan B_4N_4 yapısı için düzlemsel geometrideki izomer hesabı da yapıldı. Bu izomerin halka yapıdaki B_4N_4 yapısına göre daha düşük enerjili olduğu görüldü. Hesaplanan bazı nicelikler Tablo 3.5'de verildi. Bu yapıların nokta gruplarına baktığımızda C_S , C_2 , S_2 ve S_4 nokta gruplarına uyduğu gözlendi. Halka yapılarda enerji aralıkları elmas için bilinen yaklaşık 5.5 eV değerinden daha büyüktür. Dolayısıyla karbon nanotüplerden daha kararlıdır. Benzer şekilde özel yapılar başka bir araştırmaya konu edilebilir.

 $(BN)_y$ yapıları için hesaplanan atom başına bağlanma enerjilerine bakıldığında B_4N_4 düzlemsel dörtgen yapının diğer yapılara göre daha düşük enerjili olduğu görülmektedir (Şekil 3.6-a). Eğer bauda halka yapı alınsaydı, eğrideki genel düşüş eğilimi korunacaktı. Grafikteki ani düşüş düzlem geometrili izomerin alınmasından kaynaklanmaktadır. Diğer halka yapıdaki n=6, 8, 10, 12 yapılarına bakıldığında ise atom başına ortalama bağlanma enerjisinin yapıdaki B ve N atomları arttıkça azaldığı görülmektedir. B_4N_4 dışındaki halka yapılar üç boyutlu geometridedir. Bundan sonraki yapılar iki halkanın üst üste gelmesi ile oluşmakta ve nanotüpler için temel taşı kabul edilebilecek biçimde büyümektedir. $(BN)_{12}$ yapısının diğer halka yapılara göre bağıl olarak daha kararlı olduğu söylenebilir. Bu yapıların HOMO-LUMO enerji aralıklarına bakıldığında da yapıya bağlanan B ve N atomu arttıkça enerji aralığının arttığı görülmektedir (Şekil 3.6-b). Ancak $B_{12}N_{12}$ için bağ enerjisine göre ortaya çıkan kararlılık burada gözlenmedi. En büyük enerji aralığı $B_{10}N_{10}$ yapısında görüldü.

Şekil 3.5. (BN)_y (y≤12) yapılarının optimizasyonu yapılmış geometrileri

V	150	NG	E _{tot}	E _b	HOMO	LUMO	gap _{HL}	f_{min}	f _{max}
У	150	NU	(eV)	(eV/atom)	(eV)	(eV)	(eV)	(cm^{-1})	(cm^{-1})
2	Ι	Cs	-4328.626	-3.717	-6.714	-5.689	1.025	574	1533
4	Ι	C_2	-8670.460	-5.368	-7.396	-1.689	5.707	121	1825
4	II	S_4	-8664.156	-4.580	-8.954	-4.179	4.775	692	1165
6	II	S_2	-13002.589	-5.110	-8.269	-2.684	5.585	425	1268
8	Ι	C_2	-17339.240	-5.263	-8.254	-1.748	6.506	191	1397
9	Ι	C_{S}	-19510.443	-5.474	-8.412	-1.911	6.502	365	1388
10	Ι	S_2	-21674.943	-5.308	-8.285	-1.471	6.814	100	1483
12	Ι	C_2	-26010.411	-5.328	-8.083	-1.632	6.451	47	1542
	II	C_2	-26007.878	-5.222	-7.075	-6.176	0.900	194	1272

Tablo 3.5. (BN)_y (y≤12) Yapıları İçin Hesaplanan Nicelikler

Şekil 3.6. (BN)_y (y≤12) Yapıları İçin Hesaplanan (a) Atom Başına Ortalama Bağlanma Enerjileri ve (b) HOMO-LUMO Enerji Aralıkları

Şekil 3.7. (BN)_y (y≤12) Yapılarında Bor ve Azot Atomları Üzerindeki Toplam Yükler

 $(BN)_y$ (y≤12) yapılarındaki toplam atomik yük değerlerine bakıldığında tüm yapılarda N atomunun elektron alıcı, B atomunun ise elektron verici olduğu görülmektedir (Şekil 3.7). Bu davranış yapının büyümesi ile de değişmemektedir. Ayrıca en az elektron alışverişi B₄N₄ düzlemsel dörtgen yapısında olmuştur.

3.3. Titanyum-Azot Sistemleri: Tix (x≤8) Topakları ve N2 Katkılı Kompleksleri

Bu kısımda Ti_x ve Ti_xN₂ (x≤8) topakları incelenerek sonuçlar grafikler ve tablolar halinde değerlendirildi. İncelemiş olduğumuz bu yapılarla ilgili literatürde benzer çalışmalar mevcuttur [33-35, 37]. Daha önceki çalışmalarda karşılaşılan kafes yapıdaki Ti_x topaklarından yaralanılarak hesaplamalar gerçekleştirildi. Literatürde kafes geometrili Ti_x topaklarından; Ti_x (x=2-10) [33], Ti_x (x=2-5) [34], Ti_x (x=3-8, 13) [35], Ti_x (x=2-14, 19, 55) [37] topaklarının izomerlerine rastlandı. Burada Ti_x (x=1-8) topakları için optimizasyonlar yapıldı. Hesaplanan topaklara ait geometriler Şekil 3.8'de verildi. Ti₂ doğrusal ve Ti₃ topağı düzlemseldir. Ti₄ topağına ait üç tane izomer hesabı yapıldı. Bu izomerler arasında üçgen prizma şeklinde olan yapının daha düşük enerjiye sahip olduğu görüldü. Ti₅ topağına ait üçgen iki-piramit ve dörtgen piramit olmak üzere iki izomer hesabı yapılarak üçgen iki-piramit yapısının daha düşük enerjili olduğu görüldü. En kararlıdan itibaren Ti₆ topağında da sekizyüzlü, dörtgen iki-piramit ve beşgen piramit olmak üzere üç tane izomer hesabı yapıldı. Ti₆ topağı için kaynak [37]'de sekizyüzlü yapı burada olduğu gibi en kararlı bulunurken, [34-36] numaralı çalışmalarda üçgen iki-piramit yapısı kararlı bulunmuştur. Literatürdeki bu bilgiler de göz önünde bulundurularak Ti₇ topağında beşgen bi-piramit ve Ti₈ topağında altıgen bi-piramit yapılarında olmak üzere tek bir yapı hesabı yapıldı. Hesaplanan bu topakların literatürle uyum sağlaması sebebiyle yeni izomerler üzerinden hesaplamalara gerek görülmedi. Bu topaklara ait hesaplanan nicelikler Tablo 3.6'da verildi. Nokta gruplarına baktığımızda $C_{\infty V}$, C₈, C₂, C₂ simetrilerine uydukları görüldü. Frekanslarına bakıldığında Ti₆-III topağı dışında diğer topaklarda negatif frekansa rastlanmadı.

Şekil 3.8. Ti_x (x≤8) Topaklarının Optimizasyonu Yapılmış Geometrileri

 f_{max} (cm⁻¹)

345

305

339

322

		-		, ,	1				
v	150	ED	SG	E _{tot}	E _b	HOMO	LUMO	gap _{HL}	f _{min}
А	150	ĽD	30	(eV)	(eV/atom)	(eV)	(eV)	(eV)	(cm^{-1})
2	Ι	³ A	$C_{\infty v}$	-46225.699	-0.818	-3.807	-1.965	1.841	516
3	Ι	$^{1}A'$	Cs	-69337.942	-0.616	-3.718	-2.062	1.656	34
4	Ι	^{1}A	C_2	-92452.494	-1.092	-3.698	-1.985	1.714	139
	II	^{1}A	C_2	-92452.293	-1.042	-4.048	-2.532	1.516	88
	III	^{1}A	C_2	-92451.827	-0.925	-3.794	-2.400	1.394	58
5	Ι	^{1}A	Cs	-115567.387	-1.446	-3.915	-2.418	1.497	84
	II	^{1}A	C_{2V}	-115566.408	-1.250	-3.832	-2.213	1.619	48
6	Ι	^{1}A	C_2	-138681.517	-1.554	-3.810	-2.365	1.445	77

-1.541

-1.328

-1.818

-1.815

-3.707

-3.992

-3.583

-3.357

1.385

1.752

1.540

1.068

20

 $147^{(2)}$

115

78

-2.322

-2.240

-2.044

-2.289

Tablo 3.6. Ti_x (x≤8) Topakları İçin Hesaplanan Nicelikler

-138681.433

-138680.159

-161796.945

-184910.774

 ^{1}A

 ^{1}A

 ^{1}A

 ^{1}A

 C_2

 C_{s} C_{s}

 C_{S}

Π

III

Ι

Ι

7

8

Ti_xN₂ (x≤8) yapılarının optimizasyonları ile Şekil 3.9'da görülen geometriler elde edildi. N₂ eklenirken Ti_x topaklarındaki en kararlı izomerler temel alındı. N₂ bağlanmasıyla Ti_x topaklarında (Ti₇ yapısı hariç) bir bozulma gözlenmedi. N₂ moleküler halde ve N atomları ayrı ayrı (2N) tutunarak farklı izomerler elde edildi. Bu izomerlere baktığımızda N atomlarının ayrı ayrı (2N) tutunduğunda N atomlarının Ti atomlarıyla daha çok elektron alışverişinde bulunması sebebiyle toplam enerjilerinin mutlak değer olarak daha büyük olduğu görülmektedir. Yapı içerisine N₂ molekül durumuyla çok fazla yaklaşamamaktadır.

Şekil 3.9. Optimizasyonu yapılmış Ti_xN₂ yapılarının geometrileri

Bu yapılara ait elde edilen nicelikler Tablo 3.7'de verildi. C_S , $C_{\infty V}$, C_2 , C_{2V} nokta gruplarına rastlandı. Ti₂N₂-I, Ti₅N₂-I, Ti₆N₂-I, Ti₈N₂-III topaklarında negatif frekans gözlendi. Ti_xN₂ topaklarının hesaplamasında, Cao ve arkadaşları tarafından YFT, B3LYP fonksiyoneli kullanarak Ti için CEP-121G, N için ise 6-311++G** baz seti ile belirlenen Ti_x (x=1-7) yapılarının nötr ve yüklü (-2,-1, +1,+2) durumlarına N₂ bağlamış ve farklı spin çarpanlarında da hesaplama yaptıkları çalışmadan da yararlanıldı [38]. x=1 için bizim en kararlı izomerimiz onların hesaplamış olduğu ikinci izomere, onların hesaplamış olduğu en kararlı izomer ise bizim ,kinci izomerimize karşılık gelmektedir. x=2, 4, 6 topakları için aynı izomerler aynı kararlılıkta bulunurken, x=3, 5, 7 ve 8 topaklarında kararlılıklar değişmektedir. Bu kullanılan baz seti farklılığı ve spin çarpanı farkından kaynaklanabilecek bir sonuçtur.

v	SC	NG	E _{tot}	E _b	E _{Ad-N2}	HOMO	LUMO	gap _{HL}	d _{N-N}	f _{min.}	f _{max}
л	ЗÇ	NU	(eV)	(eV/atom)	(eV)	(eV)	(eV)	(eV)	(Å)	(cm^{-1})	(cm^{-1})
1	1	C_{2V}	-26092.67	-3.03	-0.98	-4.07	-2.79	1.28	1.33	464	1225
	1	$C_{\infty v}$	-26092.40	-2.94	-0.71	-4.57	-2.79	1.78	1.13	203	2115
2	1	C_2	-49210.72	-3.78	-4.29	-4.02	-2.58	1.45	2.49	125	876
	1	Cs	-49207.14	-2.88	-0.71	-3.74	-2.33	1.42	1.31	$271^{(1)}$	1193
3	1	Cs	-72324.41	-3.35	-5.32	-4.15	-2.37	1.78	3.16	162	813
	1	Cs	-72322.06	-2.88	-2.97	-3.80	-2.17	1.63	1.36	202	1057
4	1	Cs	-95439.83	-3.36	-6.19	-3.58	-2.01	1.57	2.65	111	767
	1	Cs	-95438.29	-3.10	-4.66	-4.42	-2.46	1.96	3.06	155	780
5	1	C_{S}	-118551.32	-2.80	-2.79	-3.83	-2.15	1.68	1.39	116	968
	1	Cs	-118548.73	-2.43	-0.20	-3.83	-2.46	1.37	1.11	$26^{(1)}$	2241
6	1	C_{S}	-141669.19	-3.18	-6.61	-3.42	-2.15	1.27	2.64	$120^{(1)}$	710
	1	Cs	-141662.82	-2.39	-0.24	-3.71	-2.53	1.18	1.11	11	2211
7	1	Cs	-164780.98	-2.80	-2.89	-3.74	-2.12	1.61	1.41	30	2254
	1	C_S	-164778.36	-2.51	-0.28	-3.60	-2.06	1.54	1.11	124	933
8	1	Cs	-187897.66	-2.99	-5.74	-3.83	-2.45	1.38	3.52	102	681
	1	Cs	-187897.54	-2.97	-5.63	-3.68	-2.35	1.34	3.36	126	655
	^{1}A	Cs	-187892.25	-2.44	-0.33	-3.40	-2.34	1.06	1.11	68 ⁽²⁾	2277

Tablo 3.7. Ti_xN₂ Topakları İçin Hesaplanan Nicelikler

Şekil 3.10'da verilen Ti_x ve Ti_xN_2 topakları için hesaplanmış olan atom başına ortalama bağlanma enerjilerine baktığımızda Ti_x topaklarında yapı büyüdükçe enerji azalırken, Ti_xN_2 topaklarında enerjide dalgalanmalar olmakta ve genel olarak çift sayıdaki Ti topaklarında diğer tek sayıdaki yapılara nazaran daha düşük enerjiye sahip oldukları görülmektedir. Yapı büyüdükçe Ti_x ve Ti_xN_2 topakları arsındaki bağlanma enerjisi aralığı da birbirine yaklaşmaktadır.

Ti_x ve Ti_xN₂ yapılarının toplam enerji üzerinden hesaplanan ikinci enerji farklarında (Şekil 3.11) Ti_x topaklarının x=2, 4, 5, 7 topakları komşu topaklara göre bağıl olarak daha kararlı davranmaktadır. Ti_xN₂ topaklarının ikinci enerji farklarında atom başına bağlanma enerjisinde ve N₂ ayrışmasında olduğu gibi burada da maksimum değerlere sahip olan topakların Ti_x x=2, 4, 6 aynı davranışı sergilediği görüldü. Genel olarak şimdiye kadar yapılan enerji analizlerine göre, Ti₄N₂ ve Ti₆N₂ topaklarının diğer topaklara göre bağıl olarak daha kararlı geometriler olduğu açıkça görülmektedir.

Şekil 3.10. Tix ve TixN2 Topakları İçin Hesaplanmış Olan Atom Başına Bağlanma Enerjileri

Şekil 3.11. Ti_x ve Ti_x N_2 Topakları İçin Hesaplanan İkinci Enerji Farkları

Şekil 3.12'de verilen N₂ molekülünün yapıdan moleküler olarak ayrışma enerjisine baktığımızda Ti_x x=4, 6, 8 yapılarından N₂ kopmasının diğer yapılara nazaran daha zor olduğu görülmektedir. Bu topakların atom başına bağlanma enerjilerine ve ikinci enerji farklarına baktığımızda da yine aynı topakların enerjilerinin daha düşük olduğu görüldü. Bu yapılar komşularına göre de bağıl olarak daha kararlı olduğu için bu yapılardan N₂ ayrışması daha zordur. Ayrıca bu topaklarda Ti ve N atomlarının daha güçlü bağ oluşturduğunu söylemek mümkündür. Ayrıca x \leq 4 topağına kadar yapıya bağlı olan N₂ molekülünü koparmak için gerekli enerjinin lineer olarak azaldığı görülmektedir. Kaynak [38]' da Ti_xN₂ topaklarında hesaplanan N₂ ayrışma enerjilerine bakıldığında, N₂ molekülünün ayrışma enerjisinin Ti₄N₂ değerinde en düşük (-6.78 eV) olduğu görüldü. Bu tez çalışmasında yapılan hesaplamalara göre Ti₆N₂ yapısının ayrışma enerjisinin (-6.609), Ti₄N₂ yapısının ayrışma enerjisine göre (-6.190) daha düşük enerjide olduğu görüldü.

Şekil 3.12. Ti_xN₂ yapıları için hesaplanmış N₂ ayrışma enerjileri

Şekil 3.13'de verilen Ti_x ve Ti_xN₂ topaklarının HOMO-LUMO enerji aralıklarında belirgin bir davranış gözlenmedi. Ancak eğilim Ti sayısı arttıkça düşüş göstermektedir. N₂ molekülü eklenmesiyle Ti₃N₂, Ti₅N₂, Ti₇N₂, Ti₈N₂ topaklarının enerji aralıklarının arttığı görüldü. Burada Ti₄, Ti₃N₂, Ti₅N₂, Ti₇N₂ topaklarının HOMO-LUMO enerji aralığı diğer topaklara göre daha yüksektir. Bu topaklarda HOMO elektron seviyesinden LUMO elektron seviyesine geçiş daha zor olacağından tepkimeye girme yatkınlıkları diğer topaklara göre daha düşüktür.

Şekil 3.13. Ti_x ve Ti_xN₂ Topakları İçin Hesaplanan HOMO-LUMO Enerji Farkları

3.4. Titanyum-Bor-Azot Sistemleri: Ti₁B_yN_z (y,z≤6) Topakları

Ti-B-N sistemleri ile ilgili literatürde yüzey malzemesi ve ince film alanında çalışınalar mevcuttur [48-56]. Ancak her üçünün de aynı anda çalışıldığı mikro ölçekli sistemlere rastlanılmamaktadır. Geçiş metallerinin N ile tepkimeye girerek oluşturduğu malzemeler, fiziksel ve mekaniksel özellikleri bakımından (yüksek erime noktası ve tepkimeye girme isteği gibi) endüstriyel uygulamalarda önemli bir yer tutmaktadır. Bu TiN yapılara Al ve B gibi hafif elementler de katkılanarak ince

filmler elde edilmektedir [48, 49, 54-56]. Ayrıca Ti-B-N sistemlerinin yüzey malzemesi olarak kullanılmasıyla ilgili çalışmalar da yapılmaktadır [50-53].

Literatüre katkı sağlayacağı ve deneysel çalışmalara yön verebileceği düşüncesiyle $Ti_1B_yN_z$ (y,z \leq 6) mikro topaklarının yapı ve enerji analizleri yapıldı. Hesaplanan sistemlerde, Ti-N ve Ti-B bağ uzunluğu 2.5 Å, B-B, N-N ve B-N bağ uzunlukları ise 2 Å değerlerinin altında iken bu atomların kendi aralarında bağ yaptığı kabul edildi. Elektronik durumlar, nokta gruplar, toplam enerjiler, HOMO enerjileri, LUMO enerjileri, HOMO-LUMO enerji aralıkları, en düşük ve en yüksek frekans değerleri tablolar halinde sunuldu.

3.4.1. Ti₁B₁N_z (z≤6) Topakları

Ti₁B₁N_z (z≤6) topakları için yapılan optimizasyonlar sonucu 51 tane yapı incelendi ve elde edilen geometriler Şekil 3.14'de verildi. Parantez içindeki değerler spin çarpanlarını göstermektedir. Ti1B1N1 topakları için farklı spin çarpanlarındaki izomerlere de bakıldı. Aynı yapıya sahip fakat spin çarpanı yüksek olan izomerlerin enerjilerinin daha düşük enerjili olduğu görüldü. Ti₁B₁N₁ topakları düzlemsel olarak şekillenirken, z=2'den sonra yapıların üç boyutlu olarak şekillendiği görülmektedir. Ti₁B₁N₁ topağının en kararlı izomerine bakıldığında her üç atomun da birbiriyle bağ yaparak üçgen geometriye büründüğü gözlendi. Bu topağa ait lineer yapılar da gözlendi. Ti-N-B yapısı Ti-B-N ve B-Ti-N biçimli tek boyutlu izomerlerden daha düşük enerjili ve kararlılığı yüksek izomerdir. Benzer şekilde N2 molekülünün Ti ve B arasında tek boyutlu izomeri Ti-B-N₂ ve B-Ti-N₂ şeklindeki lineer yapılardan daha düşük enerji çukurlarına sahiptir. Ti1B1N2 topağının en kararlı izomerine baktığımızda da N atomlarının kendi aralarında moleküler halde bağ yapmak yerine, birbirinden ayrılarak Ti'ye bağlandığı durumda daha kararlı yapıda olduğu görüldü. İlk piramit yapı (2-III) bu grupta gözlendi ve lineer yapılardan daha kararlı çıktı. Bu kompleks grubunda iki boyutlu en kararlı izomer içerisinde de N₂ yapısının olması beklenirken, 2-I izomerinde 1-I'den basit büyüme yolu ile elde edilen yapıda N atomları birbiriyle simetrik olacak şekilde düzlem içerisinde Ti ve B atomlarıyla bağ yaparak yerleştiği görüldü. z>2 için hesaplanan topakların en kararlı izomerlerine bakıldığında Ti₁B₁N₁ kararlı üçgen yapısının tüm topaklarda aynı kaldığı ve eklenen N atomlarının kendi aralarında da bağ yaparak, N₂ molekül halinde bağlanmayı tercih ettiği görülmektedir. Topakların üç boyutlu yapılarda daha kararlı olduğu anlaşılmaktadır. Örnek olarak Ti₁B₁N₆ topağında tüm atomlar Ti etrafina yerleşecek şekilde düzlemsel yapının optimizasyonu yapıldı. Yapının şeklinin değişerek üç boyutlu Ti₁B₁N₆-I izomerine dönüştüğü görüldü. Bu dönüşümle ilgili optimizasyon adımları Şekil 3.15'de görülmektedir.

Şekil 3.14. Ti₁B₁N_z (z≤6) Topaklarının Optimizasyonu Yapılmış Geometrileri

Şekil 3.15. Ti $_1B_1N_6$ Yapısının Ti $_1B_1N_6$ -I Topağına Dönüşümündeki Enerji Adımları

Çalışılan topaklara ait bazı nicelikler Tablo 3.8'de verildi. En düşük frekans değerinin sağ üstünde parantez içinde verilen değerler o yapıdaki negatif frekans sayısını göstermektedir. Bu topaklardan 10 tanesinde negatif frekansa rastlandı. Bu topaklara ait nokta gruplarına baktığımızda hepsinin C_S nokta grubuna ait oldukları görüldü.

v	N/	150	FD	NG	E _{tot}	E_b	HOMO	LUMO	gap_{HL}	f _{min}	f _{max}
л	У	150	ĽD	nu	(eV)	(eV/atom)	(eV)	(eV)	(eV)	(cm^{-1})	(cm^{-1})
1	1	Ι	³ A"	Cs	-25279.094	-3.395	-5.228	-2.849	2.379	320	1408
		II	³ A"	Čs	-25278.067	-3.052	-4.836	-3.803	1.032	179	862
		Ш	$^{1}A'$	C	-25278 045	-3 045	-4 641	-3 158	1 483	341	1501
		IV	¹ A"	C _s	-25277 598	-2.896	-5 690	-4 606	1 085	718 ⁽¹⁾	1359
		V	³ A"		-25276 422	-2 504	-5 665	-4 042	1.603	411 ⁽¹⁾	1702
		vī	¹ A'		-25275 810	-2 300	-5 904	-4 433	1.023	$452^{(1)}$	1788
		VII	³ A "		-25275.004	-2 031	-5 607	-3 424	2 184	489 ⁽¹⁾	1063
		VIII	¹ Δ'		-25274 232	-1 774	_4 985	-3.819	1 166	484 ⁽¹⁾	1041
	2	I	$^{2}\Delta$	C_{s}	-26771 299	-4 154	-5 360	-2 727	2 632	401	1485
	2	п	²	C_{s}	-26768 374	-3 123	-5.300	-2.727	2.052	416	1405
		III III	²	C_{s}	-26767.014	-3.308	-5 302	-2.976	2.499	182	1131
			2 A	$C_{\rm S}$	-20707.914	-3.308	-5.592	-2.830	2.550	102	1751
		1 V	2 A	C_{S}	-20/07.134	-3.113	-4.995	-5.620	2 204	0/	2084
		V VI	2 A	C_{s}	-20/0/.129	-3.111	-4.803	-2.3/1	2.294	120	2084
		VI	2 A	$C_{\rm S}$	-20/00.098	-3.004	-4.04/	-2.429	2.217	154	2108
			2 A	C_{S}	-20/00.334	-2.918	-4.084	-2.504	2.180	04	21//
	2	VIII		$C_{\rm S}$	-26/66.300	-2.904	-4.968	-2.670	2.299	65	1920
	3	1	A	$C_{\rm S}$	-28260.484	-4.006	-0.118	-3.333	2.765	63	1842
		11	A	C_{s}	-28260.320	-3.9/3	-5.936	-2.967	2.969	330	1548
			A	C_{s}	-28260.272	-3.963	-4.963	-3.202	1.761	320	1527
		IV	A	C_{S}	-28260.133	-3.935	-4.980	-2.939	2.040	100(1)	2139
		V	'A	C_{S}	-28259.426	-3.794	-5.807	-2.900	2.907	272	1304
		VI	-	C_{s}	-28258.934	-3.696	-7.118	-5.113	2.005	123	1498
		VII	-	C_{S}	-28257.847	-3.478	-6.151	-3.187	2.964	267	1495
		VIII	'A	C_{S}	-28257.013	-3.311	-4.420	-3.065	1.354	270	1087
		IX	A	C_{S}	-28255.755	-3.060	-5.294	-3.156	2.137	57	2226
		X	A	C_{S}	-28255.545	-3.018	-4.086	-2.710	1.376	73	2197
		XI	'A	C_{S}	-28253.571	-2.623	-5.522	-3.895	1.627	87	1217
	4	1	~A	C_{S}	-29752.915	-4.448	-5.259	-2.972	2.287	67	2156
			~A	C_{s}	-29/52.754	-4.421	-6.133	-3.254	2.879	17	2002
			'A	C_{S}	-29/49.564	-3.889	-6.169*	-3.244	2.925	/6	1997
		IV	-	C_{s}	-29749.186	-3.826	-5.571	-2.909	2.662	256	1322
		V	^{2}A	C_{s}	-29748.774	-3.757	-5.559	-2.722	2.837	99	1904
		VI	² A	C_{S}	-29748.586	-3.726	-4.956	-2.915	2.041	50	2182
		VII	⁴ A	C_{S}	-29748.500	-3.712	-5.309	-2.861	2.448	120	1524
		VIII	-	C_{s}	-29748.243	-3.669	-5.829	-3.796	2.033	88(1)	1871
	5	Ι	¹ A	C_{s}	-31242.181	-4.311	-5.950	-3.613	2.337	70	2294
		II	¹ A	C_{S}	-31242.167	-4.309	-5.351	-3.305	2.046	30	2232
		III	¹ A	C_{S}	-31241.905	-4.272	-6.215	-3.488	2.727	60	2085
		IV	A	C_{S}	-31241.894	-4.270	-5.866	-3.319	2.547	60	2356
		V	¹ A	C_{S}	-31241.567	-4.224	-7.828	-4.080	3.748	98 ⁽¹⁾	2011
		VI	^{1}A	C_{S}	-31241.480	-4.211	-5.217	-3.348	1.868	45	2160
		VII		C_{S}	-31241.292	-4.184	-5.953	-3.896	2.057	16	1818
		VIII	¹ A	C_{S}	-31239.186	-3.883	-6.461	-3.327	3.135	116	1992
	6	Ι	^{2}A	C_{S}	-32734.712	-4.617	-5.407	-3.018	2.389	50	2262
		II	-	C_{S}	-32734.461	-4.586	-5.876	-3.121	2.755	64	2341
		III	-	C_{S}	-32734.013	-4.530	-5.989	-2.874	3.115	85	2201
		IV	^{2}A	C_S	-32731.267	-4.186	-5.504	-2.916	2.588	54	2231
		V	-	C_{S}	-32730.435	-4.082	-6.036	-2.877	3.158	68	2031
		VI	-	C_S	-32730.394	-4.077	-5.777	-3.834	1.944	84 ⁽¹⁾	2211
		VII	^{2}A	C_S	-32730.323	-4.068	-5.034	-3.113	1.921	45 ⁽¹⁾	2233
		VIII	^{2}A	C_S	-32724.752	-3.372	-6.255	-3.252	3.003	249	1070

Tablo 3.8. $Ti_1B_1N_z$ (z≤6) Topakları İçin Hesaplanan Nicelikler

3.4.2. Ti₁B₂N_z (z≤6) Topakları

Ti₁B₂N_z (z≤6) topakları için yapılan optimizasyonlar sonucu 49 yapı elde edildi (Şekil 3.16). Topakların en kararlı izomerlerine bakıldığında Ti₁B₂N₃-I topağı hariç diğer yapılarda TiB₂ üçgen yapısının komplekslerin çekirdeğini oluşturduğu ve N atomlarının bu yapı üzerine yerleştiği görüldü. Ti₁B₂N₁ topağından üç tane izomer elde edildi. Bu izomerlere baktığımızda TiB₂ üçgen yapısı üzerine simetrik olarak borlara ve titanyuma tutunacak şekilde yerleştiğinde yapının daha kararlı olduğu görüldü. Ti₁B₂N₂ topağının izomerlerine baktığımızda N atomlarının Ti'ye bağlı kalacak sekilde ayrı ayrı bağlandığı topakların, moleküler olarak bağlı olduğu topaklara nazaran daha kararlı olduğu görüldü. Ti₁B₂N₃ topağı için hesaplanan izomerlere bakıldığında, en kararlı izomerde TiB₂ üçgen görünümü korunmuş fakat B atomları Ti'den uzaklaşmışlardır. Bu yapıda N atomları Ti ve B atomları arasına köprü biçiminde yerleşerek şekillenirken, üçüncü N atomu sadece iki B atomuna bağlanmış ve B atomlarının Ti ile bağını zayıflatmıştır. Ti₁ B_2N_4 topağının izomerlerine baktığımızda en kararlı izomer Ti₁B₂N₂'nin en kararlı izomerinden (2-I) büyümektedir. TiB₂ yapısında N atomları B'lere ve Ti'ye bağlanmış ve diğer iki N moleküler formunu koruvarak titanyuma bağlanmışlardır. Benzer şekilde Ti₁B₂N₄-I topağında da, N₂ molekül formunu koruyarak titanyuma bağlanmaktadır. Birinci izomerde her iki N de Ti ile bağ yaparken (üç boyutlu yapı), ikinci izomerde tek N atomu titanyuma bağlandı (düzlemsel iki boyutlu yapı) ve her iki N atomunun da titanyumla bağ yaptığı izomerin (üç boyutlu yapının) daha kararlı olduğu görüldü. TiB₂N₅ topağının en kararlı izomerine bakıldığında Ti₁B₂N₂-I topağının kararlı yapısı üzerine N+N2 olarak bağlandığı görüldü. TiB2N6 topağının en kararlı izomerine bakıldığında Ti₁B₂N₂-I topağına borlarla bağ yapmayacak şekilde Ti atomuna N₂+N₂ olarak bağ yaptığı görüldü. N2 moleküllerinden birinde tek N atomu Ti ile bağ yaparken, diğer N₂ molekülünde her iki N atomu da Ti ile bağ yapmaktadır. Bu topaklara ait bazı nicelikler Tablo 3.9'da verildi. Topakların C_S, C₂, C_{2V} nokta grubuna uydukları gözlendi. Topaklardan dört tanesinde negatif frekansa rastlandı.

Şekil 3.16. Ti₁B₂N_z (z≤6) Topaklarının Optimizasyonu Yapılmış Geometrileri

-		•••	150	ED	NC	E _{tot}	E _b	HOMO	LUMO	gap _{HL}	f_{min}	f_{max}
	х	У	150	ED	NG	(eV)	(eV/atom)	(eV)	(eV)	(eV)	(cm^{-1})	(cm^{-1})
-	2	1	Ι	^{2}A	Cs	-25953.959	-3.486	-5.149	-2.812	2.337	330	1436
			II	² A''	C_{2V}	-25953.946	-3.483	-5.121	-2.789	2.332	275	1406
			III	^{2}A	C _S	-25949.850	-2.459	-6.474	-4.419	2.055	365 ⁽²⁾	1067
		2	Ι	^{1}A	$\tilde{C_s}$	-27447.158	-4.274	-5.147	-3.162	1.984	227	1543
			II	-	Čs	-27445.217	-3.886	-6.971	-3.142	3.829	111	1482
			III	^{1}A	Cs	-27444.093	-3.661	-6.627	-3.941	2.686	132	1655
			IV	^{1}A	Cs	-27443.084	-3.459	-5.189	-3.390	1.798	122	1451
			V	^{1}A	C _s	-27442 849	-3 412	-5 439	-3 309	2 1 2 9	51	2332
			vī	^{1}A	C _s	-27442 595	-3 361	-5 638	-2.823	2.815	118	2097
			VII	^{1}A	C _s	-27441 840	-3 210	-5 282	-3 211	2 071	186	1421
			VIII	$^{1}A'$	C _s	-27441.504	-3.143	-4.550	-3.124	1.426	$154^{(1)}$	1735
		3	I	^{2}A	Cay	-28940 429	-4 811	-5.813	-3 047	2 766	145	1746
		2	П	-	C _s	-28936 812	-4 208	-7 703	-3 268	4 4 3 5	121	1771
			Ш	-	C _s	-28936 670	-4 185	-5 644	-2.958	2.686	104	1650
			IV	-	C _s	-28936.065	-4 084	-6.018	-3 323	2.696	204	1603
			V	_		-28936.000	-4 073	-5 365	-2 839	2.696 2.526	58	2133
			vi	$^{2}\Delta$	$C_{\rm s}$	-28935 971	-4 068	-5.850	-3 547	2.320	13	1893
			VII	^{2}A		-28935 799	-4 040	-5 323	-2 795	2.505	86	2239
			VIII	$^{2}\Lambda$	C_{s}	-28931 305	-3 291	-6.002	-2 944	3.059	208	1334
			IX	$^{2}\Lambda$	C_{s}	-28929 209	-2 941	-6.016	_2.944	3.070	200	1780
		Δ	I	-	C_{s}	-30429210	-4 554	-5.818	-2.940 -3.201	2.617	45	1807
		4	I II	_		-30429.210	-4.334	-4 698	-2.696	2.017	4J 65	2123
			III	¹ Δ	C_{s}	-30429.036	-4 529	-6 308	-3.043	3 265	188	1749
			IV	¹ Δ	C_{s}	-30427.831	-4 357	-6 969	-3 681	3 288	50	1575
			V	-	C_{s}	-30427.001	-4 279	-7 384	-6.002	1 383	122	1692
			vi	¹ Δ	C_{s}	-30427.239	-4 272	-8 204	-6.268	1.936	55	1493
			VII	-		-30426 786	-4 207	-6 878	-3 431	3 447	35	2418
			VIII	¹ Δ		-30426.054	-4 103	-6 431	-4 219	2 212	30	1496
			IX	¹ Δ		-30425434	-4 014	-5 484	-3 226	2.212	50 44	1603
			X	¹ A	C_2	-30424 943	-3 944	-5 648	_3 399	2.257	184	1721
			XI	-	C_{s}	-30424.549	-3 889	-5 028	-3 192	1.836	52 ⁽¹⁾	2195
			XII	¹ Δ		-30424.557	-3.878	-5 299	_3 323	1.050	32	2175
			XII XIII	Α	C_2	-30424.462	-3.861	-5.468	-2.964	2 504	81	2323
			XIII	¹ Δ	Cs Cs	-30422.146	-3 545	-5 241	-4.047	1 1 9 5	34	2011
		5	I	-	C_2	-31918 383	-4 409	-5.615	-3.175	2 440	57	2011
		5	п	² Δ	C_{s}	-31918 338	-4 404	-5 775	-3 208	2.440	50	2234
			ш	2	C _s	-31918 150	-4 380	-5.872	-3.178	2.507	138	1762
			III IV	2	Cs	21017 800	-4.380	-5.872	-3.178	2.094	57	2207
			V	²	C_2	-31917.890	-4.340	-5.386	-3.178	2.159	56	2207
			VI	А	C_{s}	-31917.304	-4.310	-6.203	-3.585	2.558	117	1608
			VII	²	C_{s}	2101/ 501	-4.200	-0.203	-3.365	2.010	2/	2245
		6	T	1 A	$C_{\rm S}$	-31914.391	-3.935	-0.302	-3.754	2.009	54 65	2245
		0	I II	A	Cs	-33410.920	-4.071	-5.052	-2.035	2.383	66	2280
				1	C_{S}	-33410.900	-4.070	-5.009	-2.933	2.155	37	1830
				А	C_{S}	-33409.039	-4.331	-3.900	-4.399 1 001	1.30/	5/	1039
			$V - C_8 - 3340/.325$		-4.2/2 1 214	-1.05/	-4.081	2.910	80 64	1/18		
			V VI	1 A	C_{S}	-33400.00/	-4.214 1122	-5.5/5 5 207	-3.20/	2.200	04 40	2123
			VI VII		$C_{\rm S}$	-33400.082	-4.133	-3.38/	-3.21/	2.170	42 20	2311
			V 11 V/111	A	C_{S}	-22200 040	-3.932	-3.002	-2./33	2.20/	20 $150^{(5)}$	2199 1101
_			V 111	-	C_{S}	-22277.749	-3.432	-1.332	-4.938	2.374	132	1484

Tablo 3.9. $Ti_1B_2N_z$ (z≤6) Topakları İçin Hesaplanan Nicelikler

3.4.3. Ti₁B₃N_z (z≤6) Topakları

 $Ti_1B_3N_z$ (z < 6) topaklarının optimize olmuş geometrilerine bakıldığında genel olarak yarı düzlemsel yapıya sahip izomerlerin daha düşük enerjili olduğu görüldü. Bu seride toplam 49 yapı elde edildi. Ti₁B₃N₁ topağının birinci ve ikinci izomerleri düzlemsel olarak şekillenirken, diğer izomerlerin üç boyutlu olduğu gözlendi. Ti₁B₃N₁-III topağının kafes yapıda olduğu görülmektedir. Ti₁B₃N₂ topaklarında Ti₁B₃N₁ topağının en kararlı izomerinden N atomlarının yerleşim yerlerine göre farklı izomerler elde edildi. Ti1B3N1-I topağında Ti-B bağı arasına, köprü gibi bağlanan N atomuna simetrik olarak diğer N atomu da yine Ti-B arasına bağlanarak şekillendiği izomerin daha kararlı yapıda olduğu görüldü. Ti₁B₃N₂-VII izomerinde N_2 molekülününTiB₃ ile zayıf bir etkileşim içinde olduğu anlaşılmaktadır. Ti₁B₃N₂-X izomeri kafes biçimindedir. Ti1B3N1 ve Ti1B3N2 yapılarının en kararlı izomerlerinde B'ler ikili olarak birbirlerine ve Ti'ye bağlanmış, N atomları da bu yapıyı bozmadan B'lerin etrafina ve Ti'ye tutunmayı tercih etmiştir. z>2 için en kararlı izomerlere bakıldığında artık yapıya eklenen N atomları arttıkça B ve N atomlarının Ti etrafina B-N şeklinde sıralı olarak dizilmeyi tercih ettiği görüldü. Ti₁B₃N₄-I topağında N, B atomları halka biçiminde dizilmiş ve Ti atomu da N atomlarından bağlanarak halka yapıya katılmıştır. Ti₁B₃N₅-I topağı Ti₁B₃N₄-I topağından büyüyerek Ti-N arasındaki bağ üzerine bir N atomu gelerek kararlı hale geçmiştir. Ti₁B₃N₆-I topağında büyüme yine Ti₁B₃N₄-I topağı üzerinden olmuş fakat burada N atomları Ti-N arasına bağlanmak yerine moleküler halde Ti atomuna bağlanmayı tercih etmişlerdir. $Ti_1B_3N_2(VII)-Ti_1B_3N_2(IX)$, $Ti_1B_3N_4(IV)-Ti_1B_3N_4(V)$ ve $Ti_1B_3N_6(I)-Ti_1B_3N_6(II)$ topaklarına baktığımızda N₂ molekülünde her iki atomun da Ti'ye bağlı ve tek N'nin Ti'ye bağlı izomerleri görülmektedir. Bu topaklarda genel olarak N2 molekülünün tek N ile Ti'ye bağlandığı durumda daha düşük enerjili oldukları gözlendi. Bu topaklara ait nicelikler Tablo 3.10'da verildi. Bu topakların hepsi Cs nokta grubuna uymaktadır. Bu topaklardan 4 tanesinde negatif frekansa rastlandı.

Şekil 3.17. Ti₁B₃N_z ($z \le 6$) Topaklarının Optimizasyonu Yapılmış Geometrileri

		160	ED	NC	E _{tot}	E _b	HOMO	LUMO	gap _{HL}	\mathbf{f}_{\min}	f _{max}
X	у	150	ЕD	NU	(eV)	(eV/atom)	(eV)	(eV)	(eV)	(cm^{-1})	(cm^{-1})
3	1	Ι	^{1}A	Cs	-26630.690	-3.914	-6.052	-3.156	2.895	294	1560
		II	^{1}A	C_{S}	-26629.562	-3.688	-5.313	-2.878	2.435	255	1480
		III	^{1}A	C_{S}	-26628.646	-3.505	-5.373	-3.232	2.142	148	1242
		IV	^{1}A	C_{S}	-26628.093	-3.395	-5.354	-2.697	2.657	202	1046
		V	^{1}A	$\tilde{C_s}$	-26627.326	-3.241	-6.423	-3.257	3.166	51	1237
	2	Ι	^{2}A	$\tilde{C_s}$	-28123.472	-4.430	-5.988	-3.251	2.737	133	1602
		II	^{2}A	$\tilde{C_s}$	-28123.394	-4.417	-5.653	-3.086	2.568	148	1637
		III	^{2}A	Čs	-28123.070	-4.363	-5.840	-3.222	2.618	61	1645
		IV	^{2}A	$\tilde{C_s}$	-28122.444	-4.258	-5.511	-3.292	2.219	100	1644
		V	^{2}A	$\tilde{C_s}$	-28121.826	-4.156	-5.733	-3.013	2.721	50	1496
		VI	^{2}A	C _s	-28121.269	-4.063	-6.361	-3.707	2.654	54	2214
		VII	^{2}A	Čs	-28119.058	-3.694	-6.366	-2.735	3.631	75	1416
		VIII	^{2}A	Cs	-28119.019	-3.688	-5.649	-3.372	2.277	146	1619
		IX	^{2}A	Ċs	-28118.794	-3.650	-6.883	-6.307	0.576	77	2040
		Х	² A"	Cs	-28118.040	-3.524	-6.204	-3.323	2.882	$260^{(1)}$	1261
	3	I	^{1}A	C _s	-29615 821	-4 736	-5 430	-3 296	2 1 3 4	145	1716
	-	П	_	C _s	-29614 994	-4 618	-5 334	-3 496	1 838	147	1728
		Ш	^{1}A	C _s	-29613 953	-4 470	-7 021	-4 329	2 692	62	1672
		IV	^{1}A	C _s	-29613 501	-4 405	-7 644	-3 604	4 040	51	1484
		V	^{1}A	C _s	-29612 915	-4 321	-6 140	-3 322	2 818	100	1618
		vī	-	Cs	-29612.718	-4 293	-4 811	-3 089	1 722	140	1455
		VII	-	C _s	-29612.185	-4 217	-6 415	-4 473	1 943	107	1851
		VIII	^{1}A	C _s	-29611 729	-4 152	-5 827	-3 337	2 4 9 0	58	2310
		IX	^{1}A	C _s	-29610 264	-3 943	-4 779	-3.819	0.960	55	2169
		x	¹ A		-29610.158	-3 927	-6.883	-6 307	0.576	$50^{(2)}$	1668
		XI	¹ A	C_{s}	-29609 874	-3 887	-4 865	-3 094	1 772	$166^{(1)}$	1364
		XII	$^{1}\mathbf{A}$	C _s	-29606 192	-3 361	-6 204	-3 323	2 882	$113^{(2)}$	2289
	4	I	$^{2}\Lambda$		-31109 552	-5 139	-5.866	-3 203	2.663	145	1833
	•	п	$^{2}\Lambda$		-31102.773	-4 292	-6 389	-3 102	3 287	59	1995
		ш	$^{2}\Lambda$	C_{s}	-31101 707	-4 158	-5 900	-3 139	2 761	53	1620
		IV	$^{2}\Lambda$	C_{s}	-31100.671	-4 029	-5 709	-3 493	2.701	51	2275
		V	-	C_{s}	-31100.013	-3 947	-5 709	-3 261	2.210	62	2196
		vī	_	C_{s}	-31098 846	-3 801	-6.082	-3 439	3 3 1 6	98	1571
	5	T	_	C_{s}	-32597 982	-4.863	-6.235	-3.157	3.078	92	1841
	5	Î	$^{1}\mathbf{A}$	C_{s}	-32594 245	-4 448	-5 473	-3 266	2,207	34	2290
		Ш	-	C_{s}	-32594.091	- <u>4</u> 431	-6 200	-3 344	2.207	57 52	1823
		IV	_	C_{s}	_32503 700	_1 307	-5 720	-5 111	0.618	20	1748
		V	-	C_{s}	-32593.790	_4 397	-5.729	-3.602	1 989	29 40	2256
	6	T	² Δ	C_{s}	-34091 107		-6 582	-3.486	3 006		2050
	0	т П	Л	C_{s}	-34091.107	-5.112	-5.647	-3.866	1 781	27	2052
			-	C_{s}	34086 524	-5.109	-3.047 8 757	3 207	5 5 5 0	32 40	2433
			-	C_{S}	-34080.324	-4.034	-0.757	-3.207	2 162	40 20	1009
		V	-	C_{-}	-34080.390	-4.041 _1 611	-0.043	-2.002	5.105 2.155	∠0 75	1908
		V VI	-	C_{S}	-34004.7/3	-4.041	-J.023 5 915	-5.000	2.133	10	1704
		VI VII	-	$C_{\rm S}$	-34000.390	-4.499	-3.013	-2.730	3.004 2.050	38 190 ⁽¹⁾	1/42
		VII VIII	2	C_{S}	-34083.//2	-4.3/9	-3.893	-2.930	2.939 1.009	189	10/3
			A 2	C_{S}	-34082.148	-4.216	-3.418	-3.419	1.998	33 124	2512
		IA V	А	C_{S}	-34082.048	-4.206	-0.139	-2.944	3.193	134	1090
		A VI	-	$C_{\rm S}$	-34081.487	-4.150	-5./89	-5.491	2.298	59 107	2529
		XI	-	C_{S}	-34081.259	-4.127	-6.831	-3.257	3.5/4	197	1441

Tablo 3.10. Ti₁B₃N_z (z \leq 6) Topakları İçin Hesaplanan Nicelikler

3.4.4. Ti₁B₄N_z (z≤6) Topakları

Şekil 3.18'de verilen Ti₁B₄N_z (z≤6) topaklarında da genel olarak düzlemsel ve yarı düzlemsel topakların daha düşük enerjili olduğu gözlendi. Bu topaklara ait nicelikler Tablo 3.11'de verildi. Bu seride toplam 72 yapı elde edildi. Ti₁B₄N₁ topakları için hesaplanan izomerlere bakıldığında en kararlı izomerde kararlı saf B₄ topağının rombik yapısı üzerine [2] Ti bağlanmış ve Ti-B arasında oluşan bağ üzerine de N atomu bağlanarak büyüme gerçekleşmiştir. Ti₁B₄N₁ topağının VI., IX. ve X. izomerlerinde yarı kafes ve kafes şekillenmeler görülmektedir. z>1 için en kararlı izomerlerde topağa eklenen N atomu arttıkça topaktaki borların kendi aralarında değil de N atomlarını araya alarak Ti'ye bağlanmaktadır. Ayrıca bu topaklarda N atomları moleküler halde değil de ayrışık durumdadır. İki ve üç N içeren topakların en kararlı izomerlerinde Ti merkezli halka oluşumu elde edildi. Bunun sebebi Ti atomunun valans elektronlarının bu atomun bağ yapmaya yatkınlığını artırmasıdır. Ti₁B₄N₂ topağının IX ve X. izomerlerine bakıldığında B'lerin kendi aralarında bağ yaparak ve halka olarak Ti'ye bağlanmış ve N atomlarının da moleküler olarak Ti'ye bağlı durumları görülmektedir. Bu izomerlerden borların kendi aralarında bağ yaparak Ti'ye bağlı olduğu durumun enerjisi daha düşüktür. Ti₁B₄N₄ topağında en kararlı izomerde B ve azotların Ti atomunun etrafina yerleştiği görülmektedir. Ti₁B₄N₄ topağında iki B atomu araya bir tane N alarak Ti'ye bağlı kalmayı ve B-N şeklinde sıralı dizilmeyi tercih ettiği görülmektedir. Ti₁B₄N₅ topağında halka yapıdaki sıralı B-N'lerin N atomlarından titanyuma tutunacak şekilde bağlandığında daha kararlı yapıda olduğu ortaya çıktı. Ti₁B₄N₆ topağının en kararlı izomerine bakıldığında Ti'ye 2(B₂N₃) şeklinde bağlandığı görülmektedir. Bu grupta incelenen topaklarda atom sayısının artması konfigürasyon uzayında daha fazla yapının oluşmasına sebep olmaktadır. O sebeple daha fazla yapısal izomer ortaya çıkmakta ve en kararlı yapının belirlenmesi de zorlaşmaktadır. Elde edilen izomerlerin çeşitliliği ve gerek spin çarpanları gerekse atomların koordinasyonları en düşük enerjili yapıdan kararlılığı zayıf olana doğru sıralamayı değiştirmektedir. Bu da büyüme mekanizmalarında farklı yolların ortaya çıkmasına sebep olmaktadır.

Şekil 3.18. Ti₁ B_4N_z ($z \le 6$) Topaklarının Optimizasyonu Yapılmış Geometrileri

v		150	ED	NG	E _{tot}	E _b	HOMO	LUMO	gap_{HL}	f_{min}	f _{max}
л	у	150	ĽD	NU	(eV)	(eV/atom)	(eV)	(eV)	(eV)	(cm^{-1})	(cm^{-1})
4	1	Ι	^{2}A	C_{S}	-27306.304	-4.013	-5.929	-3.033	2.897	190	1542
		II	^{2}A	$\tilde{C_s}$	-27306.066	-3.973	-6.086	-3.420	2.666	99	1622
		III	^{2}A	Čs	-27305.924	-3.950	-6.152	-3.400	2.751	64	1668
		IV	^{2}A	Cs	-27305 607	-3 897	-5 722	-3 352	2 370	81	1570
		V	^{2}A	C _s	-27305 111	-3.814	-5 206	-2 650	2 5 5 6	106	1310
		vī	^{2}A	C _s	-27305.049	-3 804	-5 880	-3 436	2.000 2 4 4 4	99	1379
		VII	$^{2}\Delta$		-27304 865	-3 773	-5 678	-3 162	2 517	102	1511
		VIII		C_{s}	-27304.005	-3 755	-5 901	-3 533	2.317	175	1594
		IX	2 A	C_{s}	-27303.066	-3 512	-5.526	-3.205	2.300	1/5	1008
		X X	²	C_{s}	-27303.300	-3.512	-5.520	-3.275	2.232	157	1137
	2	л I	1	C_{s}	-27505.500	-4 525	-6.423	-2.773	2.752	83	1670
	2	I II	1	C_{s}	28700 660	4 5 2 3	6 5 2 3	2 5 1 6	3.005	$211^{(1)}$	1680
				C_{2V}	-28799.000	-4.325	-0.525	2 1 1 5	2 5 2 0	102	1629
				C_{S}	-20/90.400	-4.330	-3.904	-3.443	2.339	105	1020
		IV V		C_{S}	-20/9/./43	-4.249	-3.240	-2.362	2.000	227 61	1435
		V VI		C_{S}	-28/95.902	-3.993	-3.636	-4.220	1.012	01	1555
				C_{S}	-28/95.012	-3.945	-3.033	-4.145	1.48/	91	1505
				C_{S}	-28/95.113	-3.8/3	-5.310	-2.739	2.3/1	83	16/0
				C_{S}	-28/95.01/	-3.800	-0.214	-3.338	2.830	104	1494
				$C_{\rm S}$	-28/94.139	-3./34	-4.8/2	-3.300	1.5/1	27	2126
	2	X	A	$C_{\rm S}$	-28/93.985	-3./12	-5.485	-3.422	2.063	51	2300
	3	l	-	C_{S}	-30291.431	-4.707	-6.292	-3.611	2.681	64	1720
			-	C_{s}	-30290.738	-4.621	-6.089	-3.931	2.158	59	1712
			-	C_{s}	-30290.187	-4.552	-5.511	-3.052	2.459	3/	1/09
		IV	-A	$C_{\rm S}$	-30288.355	-4.323	-4.29/	-2.544	1./53	113	1637
		V	-	C_{s}	-30288.009	-4.280	-5.934	-3.432	2.502	49	2272
		VI	2.	C_{S}	-3028/.8/6	-4.263	-5.910	-3.372	2.539	16	2225
		VII	-A	$C_{\rm S}$	-30286.041	-4.034	-5.956	-3.523	2.432	64	2162
		VIII	-A	$C_{\rm S}$	-30285.583	-3.976	-6.129	-3.953	2.1/6	68	2304
	4	IX		$C_{\rm S}$	-30285.080	-3.914	-6.227	-4.03/	2.190	107	2145
	4	I II	A	$C_{\rm S}$	-31/83.831	-4.921	-5.86/	-3.628	2.239	107	1/98
		11	-	$C_{\rm S}$	-31/83./80	-4.915	-6.059	-3.433	2.627	125	1/43
			-	$C_{\rm S}$	-31/83.638	-4.899	-5.609	-3.289	2.320	96	1/91
			-	$C_{\rm S}$	-31/83.486	-4.882	-6.089	-3.8/4	2.216	82	1/30
		V	-	$C_{\rm S}$	-31/82.946	-4.822	-4.918	-2.445	2.4/3	93	1/90
		VI	-	$C_{\rm S}$	-31/82.695	-4.795	-6.086	-4.648	1.438	32 52	1811
		VII	-	C _s	-31782.496	-4.772	-8.097	-4.333	3.764	53	1684
		VIII	-	C _s	-31782.146	-4.733	-5.014	-4.542	0.471	34	1933
		IX	$^{\prime}A_{1}$	C_{4V}	-31782.117	-4.730	-3.720	-2.314	1.406	184	1617
		X	-	C_{S}	-31/81.4/3	-4.659	-5.959	-3.234	2.726	210	1553
		XI	'Α	C _s	-31781.122	-4.620	-5.254	-3.299	1.955	212	1416
		XII	- 1.	Cs	-31779.954	-4.490	-5.820	-3.492	2.329	101	1494
		XIII	ΊA	Cs	-31779.886	-4.482	-5.834	-3.138	2.696	109	1888
		XIV	-	C_{S}	-31779.235	-4.410	-5.652	-3.791	1.861	58	1693
		XV	-	C_{S}	-31778.381	-4.315	-6.275	-4.225	2.050	93	1811
		XVI	¹ A	C_2	-31778.062	-4.280	-6.332	-3.762	2.570	72	1679
		XVII	'A'	C_{S}	-31777.408	-4.207	-5.472	-3.438	2.034	223(2)	1012
		XVIII	·Α	C_{S}	-31777.377	-4.204	-5.720	-2.666	3.055	253	1673
		XIX	-	C_{S}	-317/6.735	-4.132	-5.249	-3.285	1.964	68 ⁽¹⁾	2305
		XX	- 1 ·	C _S	-31776.313	-4.085	-5.813	-3.484	2.330	134(1)	1662
		XXI	'A	C _S	-31776.143	-4.067	-5.124	-3.416	1.708	46	2208
	_	XXII	'Α	C_{S}	-31775.587	-4.005	-5.881	-3.637	2.244	103	1835
4	5	l H	-	C_{S}	-33278.210	-5.289	-5.911	-3.215	2.696	82	1926
		11	-	Cs	-33276.971	-5.165	-5.724	-2.800	2.924	79	1884
		III	-	C_{S}	-33273.843	-4.853	-5.669	-3.254	2.415	136	1713

Tablo 3.11. Ti₁B₄N_z (z \leq 6) Topakları İçin Hesaplanan Nicelikler

65

	IV	^{2}A	C_{S}	-33273.420	-4.810	-5.786	-2.903	2.883	109	1868
	V	-	C_{S}	-33270.464	-4.515	-5.675	-3.342	2.333	54	2405
	VI	^{2}A	C_S	-33269.794	-4.448	-5.939	-2.742	3.197	78	1810
	VII	^{2}A	C_{S}	-33269.741	-4.442	-6.198	-3.349	2.849	121	1762
6	Ι	^{1}A	C_{S}	-34765.764	-4.970	-8.013	-3.839	4.174	33	1757
	II	-	C_{S}	-34765.385	-4.936	-6.567	-3.919	2.648	65	1789
	III	-	C_{S}	-34764.636	-4.868	-5.058	-2.376	2.683	45	1827
	IV	-	C_{S}	-34764.577	-4.862	-4.818	-4.238	0.581	71	1908
	V	-	C_{S}	-34764.524	-4.858	-6.792	-3.235	3.557	165	1776
	VI	-	C_{S}	-34760.886	-4.527	-5.321	-2.704	2.618	171	1665
	VII	-	C_2	-34760.310	-4.475	-5.188	-2.849	2.339	103	1691
	VIII	^{1}A	C_{S}	-34759.466	-4.398	-6.208	-3.425	2.782	44	2371
	IX	^{1}A	C_{S}	-34758.720	-4.330	-6.144	-3.365	2.779	42	1928
	Х	-	C_{S}	-34758.330	-4.294	-5.903	-3.816	2.086	105	1479
	XI	^{1}A	C_{S}	-34758.046	-4.269	-5.189	-3.413	1.776	50	2249
	XII	-	Cs	-34755.860	-4.070	-5.280	-3.282	1.999	$140^{(1)}$	1709

Dolayısıyla negatif frekanslı yarı kararlı (metastable) durumlarda gözlenebilmektedir. Faz uzayından global minimumlara ulaşmada zorlukların tam olarak giderilmemiş olması sebebiyle, hesaplamalarda tayin edilen yerel (local) minimumlardan en düşük enerjili olan izomer, o kompleks için en kararlı topak olarak kabul edildi. Bu topaklar C_S, C₂, C_{4V}, C_{4V} nokta gruplarına uymaktadır. 4 topakta negatif frekansa rastlanmıştır.

3.4.5. Ti₁B₅N_z (z≤6) Topakları

Şekil 3.19'da geometrileri verilen $Ti_1B_5N_z$ ($z\leq6$) topaklarında düzlemsel, yarı düzlemsel ve üç boyutlu yapılar görülmektedir. Bu topaklara ait hesaplanan nicelikler Tablo 3.12'de verildi. Toplamda 70 yapı incelendi. İncelen yapıların en kararlı izomerlerine bakıldığında $Ti_1B_5N_1$ içerisinde borlar kendi aralarında da bağ yaparak kararlı saf B_5 yapısını [2] korudu ve Ti atomu koordinasyon sayısı üç olacak şekilde borlara bağlandı. N atomu ise Ti-B bağı üzerine tutunarak yapıyı tamamlamaktadır. Aynı B_5 yapısında titanyumun iki B atomuyla bağlanarak oluşturduğu topağın daha kararsız yapıda olduğu görüldü (VI. izomer). Ayrıca X. izomerin kafes geometride olduğu görülmektedir. $Ti_1B_5N_2$ topağında en kararlı izomerde bütün borlar titanyuma tutunmuş ve N atomları da simetrik olarak iki uçtaki borlara ve titanyuma tutunarak bağlanmayı tercih etmişlerdir. Simetrik olarak N eklenmesiyle $Ti_1B_5N_1$ -I topağından büyüyen daha az kararlı $Ti_1B_5N_2$ -IV yapısı elde edildi.

Şekil 3.19. Ti₁ B_5N_z (z ≤ 6) Topaklarının Optimizasyonu Yapılmış Geometrileri

					E	F	HOMO	LIMO	~~~	£	ſ
х	y	ISO	SÇ	NG	E _{tot}	E_b	HOMO		gap _{HL}	I _{min}	I _{max}
			,	-	(eV)	(eV/atom)	(eV)	(ev)	(eV)	(cm^{-1})	(cm^{-})
5	1	Ι	1	C_{S}	-27982.183	-4.122	-5.767	-3.090	2.677	237	1434
		II	1	C_{S}	-27981.987	-4.094	-5.308	-2.721	2.587	290	1383
		III	1	C_{S}	-27981.716	-4.055	-6.156	-4.017	2.140	124	1634
		IV	1	C_{S}	-27981.644	-4.045	-5.469	-3.124	2.345	241	1355
		V	1	Čs	-27981.541	-4.030	-6.292	-4.480	1.813	$156^{(1)}$	1623
		VI	1	C	-27981 592	-4 037	-4 996	-3 420	1 575	152	1441
		VII	1	C.	-27980 504	-3 882	-4 831	-3 302	1 529	148	1565
		VIII	1	C_{s}	27980.304	3 873	6.014	1 273	1.52	120	1635
			1	C_{s}	27070 210	-3.873	6 3 4 0	-4.273	1.741 2.467	129	1404
			1	C_{S}	-2/9/9.519	-5./15	-0.340	-3.874	2.407	41	1494
		A VI	1	C_{S}	-2/9/9.200	-3.705	-5.440	-3.068	2.379	229	1048
		XI	l	C _s	-2/9/9.110	-3.683	-6.548	-4.052	2.496	91(1)	1230
		XII	1	C_{S}	-27977.667	-3.477	-5.870	-3.478	2.391	216	929
	2	Ι	2	C_{S}	-29475.359	-4.532	-6.442	-3.729	2.714	59	1666
		II	2	C_{S}	-29475.152	-4.506	-5.720	-3.000	2.720	117	1564
		III	2	C_{S}	-29474.886	-4.473	-6.188	-3.846	2.342	52	1629
		IV	2	C_{S}	-29474.570	-4.433	-5.627	-3.435	2.192	240	1461
		V	2	Čs	-29473.909	-4.351	-4.966	-3.705	1.261	51	1562
		VI	2	Čs	-29473.837	-4.342	-5.905	-3.824	2.081	221	1614
		VII	2	C _s	-29471 505	-4 050	-5 318	-3 356	1 962	102	1383
		VIII	2	C_{a}	-29470 833	-3.966	-5 428	-3 656	1 773	42	2219
		IV	2	C_{s}	20470.035	3 055	6 074	3 446	2 620	14	2008
		IA V	2	Cs	-29470.740	-3.933	-0.074	-3.440	1.029	44 65	2008
			2	C_{S}	-29470.040	-3.943	-5.440	-5.008	1.052	66	1592
	2		2	C_{S}	-294/0.5/5	-5.909	-0.170	-3.900	2.204	00	1362
	3	I T	1	C_{S}	-30967.951	-4./80	-0.030	-3.838	2.798	83	1/30
		11	I	C_{S}	-30967.790	-4.768	-/.191	-3.391	3.800	167	1/54
		111	1	C_{S}	-30967.472	-4.733	-5.202	-2.907	2.295	77	1847
		IV	1	C_{S}	-30967.361	-4.720	-5.210	-2.738	2.472	163	1642
		V	1	C_{S}	-30966.714	-4.649	-5.879	-3.440	2.439	102	1673
		VI	1	C_{S}	-30966.389	-4.612	-6.395	-3.240	3.155	199	1702
		VII	1	C_{S}	-30966.044	-4.574	-5.393	-2.826	2.567	130	1809
		VIII	1	C_{S}	-30964.451	-4.397	-6.349	-4.144	2.205	77	1689
		IX	1	Čs	-30963.947	-4.341	-6.236	-3.905	2.331	66	1827
		Х	1	Cs	-30959 622	-3 861	-4 471	-2.686	1 785	$208^{(3)}$	1389
	4	I	2	C.	-32460 539	-4 989	-4 523	-2 382	2 141	69	1939
		П	$\frac{2}{2}$	C_{α}	-32460 165	-4 952	-5 302	-2.898	2.111 2 404	73	1935
		ш	$\frac{2}{2}$	C_{s}	-32460.109	-1 946	-6.405	-3 595	2.404	83	1711
		III IV	2	C_{s}	22460.105	4 0 4 1	-0.403	-5.575	2.010 2.142	66	1027
		1 V	2	C_{S}	-32400.033	-4.941	-4.344	-2.402	2.142	00	1957
		V	2	C_{S}	-52459.851	-4.918	-3.292	-2.838	2.455	82 70	1910
		VI	2	C_{S}	-32459.371	-4.8/2	-5.812	-3.257	2.333	70 (1)	1891
		VII	2	C_{S}	-32459.260	-4.861	-5.474	-2.782	2.691	51(1)	1927
		VIII	2	Cs	-32458.878	-4.823	-4.763	-2.288	2.475	173	1762
		IX	2	C_{S}	-32456.519	-4.587	-6.010	-3.615	2.395	60	2381
		Х	2	C_{S}	-32456.461	-4.581	-6.141	-3.670	2.471	53	2114
		XI	2	C_{S}	-32456.055	-4.540	-5.450	-2.889	2.561	128	1637
		XII	2	Cs	-32455.892	-4.524	-6.235	-4.195	2.040	85	2100
		XIII	2	$\tilde{C_s}$	-32453.586	-4.294	-6.102	-4.083	2.019	92	1640
		XIV	2	Čs	-32452.575	-4.192	-5.683	-3.717	1.965	48	2271
		XV	2	Č	-32452,469	-4.182	-5.626	-3.364	2.262	45	2282
5	5	I	1	C _c	-33952 927	-5 137	-4 441	-2.807	1 634	59	1973
5	5	п	1	C_{2}	_33952.527	-5 068	_5 320	_3 0376	2 283	30	1907
		ш	1	C_{-}	_33051 514	5 000	-5.520	-2.0570	2.203	115	1717
		111 TV	1	C_{S}	22051 247	-5.008	-5.514 1 000	-5.072	2.242	113	1717
		1 V 17	1	C_{S}	-33931.20/	-4.980	-4.232	-2.230	1.783	124	1/22
		V	1	C _S	-33950.823	-4.945	-5.106	-2.782	2.324	102	1820
		VI	1	Cs	-33950.821	-4.945	-6.129	-3.652	2.477	90	1795

Tablo 3.12. Ti₁ B_5N_z (z≤6) Topakları İçin Hesaplanan Nicelikler

	VII	1	Cs	-33950.699	-4.934	-5.953	-3.682	2.271	138	1790
	VIII	1	Cs	-33949.196	-4.798	-6.292	-3.609	2.683	42	2400
	IX	1	Cs	-33946.065	-4.754	-6.574	-3.434	3.140	102	1794
	Х	1	C_{S}	-33946.065	-4.513	-6.574	-3.434	3.140	84	1681
	XI	1	C_{S}	-33945.742	-4.484	-6.664	-3.489	3.175	34	1750
	XII	1	Cs	-33945.571	-4.468	-5.704	-3.016	2.687	162	1708
6	Ι	2	Cs	-35444.536	-5.195	-5.089	-2.160	2.929	57	1930
	II	2	Cs	-35443.393	-5.100	-6.166	-3.177	2.989	145	1759
	III	2	Cs	-35442.426	-5.019	-5.313	-2.576	2.737	92	1753
	IV	2	Cs	-35441.764	-4.964	-6.208	-3.118	3.090	57	1818
	V	2	Cs	-35443.516	-5.110	-6.250	-3.129	3.121	105	1732
	VI	2	C_{S}	-35439.651	-4.788	-5.304	-2.930	2.374	84	1827
	VII	2	C_{S}	-35438.633	-4.703	-6.476	-3.710	2.766	61	1940
	VIII	2	Cs	-35434.457	-4.355	-5.868	-3.234	2.634	38	2307
	IX	2	Cs	-35434.322	-4.344	-6.199	-3.300	2.898	90	1800
	Х	2	Cs	-35434.266	-4.339	-5.536	-3.075	2.461	47	2281

Şekil 3.19'da z>2'den sonra borlar birbirlerinden ayrılarak N atomlarını araya aldıkları durumlarda daha kararlı bir yapıya bürünmüşlerdir. z=4, 5, 6 topaklarının en kararlı izomerlerinde N ve B atomları B-N şeklinde sıralı olarak dizilip iki uçtaki atomlardan Ti'ye bağlanarak halka yapıda kalmayı tercih ettiği görüldü. . Tüm atomların Ti etrafına sıralı olarak dizilen izomerlerin optimizasyonu da yapıldı (Ti₁B₅N₃-IV, Ti₁B₅N₄-VIII, Ti₁B₅N₄-XIII, Ti₁B₅N₅-IV, Ti₁B₅N₅-XII, Ti₁B₅N₆-VI). Halka yapıdaki topaklara göre daha kararsız yapıda oldukları görüldü. Bu topaklar C_s nokta grubuna uymaktadırlar.

3.4.6. Ti₁B₆N_z (z≤6) Topakları

TiB₆ topaklarına N atomunun bağlandığı sistemlerden toplam 60 yapı incelendi. Bu topakların kararlı geometrileri Şekil 3.13'de görülmektedir. Bu yapılara ait nicelikler Tablo 3.13'de verildi. TiB₆N₁ topağı için hesaplanan en kararlı yapıda borlar kendi aralarında bağ yapmaktadır. B₇'nin tekerlek yapısında halkadaki B atomlarının bir tanesinin yerine Ti atomu yerleşmekte ve bu topağın üzerine N atomu Ti-B bağı üzerinde köprü biçiminde yerleşerek TiB₆N₁ kompleksinin en kararlı izomerini oluşturmaktadır. Ti atomu üç tane B atomuyla bağ yaparak koordinasyonunu oluşturmaktadır. İkinci izomerde B₆ ve N atomları yarı kafes yapı oluşmaktadır. Bu tip yapılar "kase" olarak da adlandırılmaktadır. VI. izomerde N atomu TiB₆ yapısında titanyumla bağ yapmayıp dört B atomuyla bağlanmaktadır. TiB₆N₂ topağının en kararlı izomeri TiB₆N₁ topağının en kararlı izomerinden büyümektedir. N atomu bu topağa yine Ti-B bağı üzerinde ikinci ve simetrik olarak köprü biçiminde bağlanmayı tercih etmiştir. Ayrıca N atomlarının moleküler halde değil de ayrışarak bağlandığı izomerlerin daha düşük enerjili oldukları görüldü (2-IX, -X, -XI, -XII).

1-I (2)	1-II (2)	1-III (2)	1-IV (2)	1-V (2)	1-VI (2)
\bigcirc	\bigotimes				
1-VII (2)	2-I (1)	2-II (1)	2-III (1)	2-IV (1)	2-V (1)
		\bigotimes			
2-VI (1)	2-VII (1)	2-VIII (1)	2-IX (1)	2-X (1)	2-XI (1)
2-XII (1)	2-XIII (1)	3-I (2)	3-II (2)	3-III (2)	3-IV (2)
3-V (2)	3-VI (2)	4-I (1)	4-II (1)	4-III (1)	4-IV (1)
	the sea				
4-V (1)	4-VI (1)	4-VII (1)	4-VIII (1)	4-IX (1)	4-X (1)
	and the				
4-XI (1)	4-XII (1)	4-XIII (1)	5-I (2)	5-II (2)	5-III (2)
				Sec.	
5-IV (2)	5-V (2)	5-VI (2)	5-VII (2)	6-I (1)	6-II (1)
			00		
6-III (1)	6-IV (1)	6-V (1)	6-VI (1)	6-VII (1)	6-VIII (1)
6-IX (1)	6-X (1)	6-XI (1)	6-XII (1)	6-XIII (1)	6-XIV (1)

Şekil 3.20. Ti₁ B_6N_z (z≤6) Topaklarının Optimizasyonu Yapılmış Geometrileri

					F	F.	НОМО	LUMO	(12 1)	f.	f
х	у	ISO	SÇ	SG	$(\mathbf{a}V)$	(eV/atom)	(aV)	(aV)	(aV)	(cm^{-1})	(cm^{-1})
	1	T	2	C	$\frac{(ev)}{28(58,720)}$	(ev/atom)	(0)	25(0	$\frac{(ev)}{2.214}$		(CIII) 1551
6	I	1	2	C_{S}	-28658.729	-4.287	-3.883	-3.369	2.314	94	1331
		11	2	C_{S}	-28658.623	-4.2/3	-3.827	-3.303	2.464	16/	1418
			2	C_{S}	-28657.558	-4.140	-6.467	-3.59/	2.870	82	1628
		IV	2	C _S	-28656.616	-4.023	-6.316	-3.330	2.986	119	1617
		V	2	C_{S}	-28656.253	-3.977	-6.142	-3.818	2.324	98	1636
		VI		C_{S}	-28655.084	-3.831	-5.813	-2.729	3.084	104	1183
		VII	2	C_{S}	-28654.641	-3.776	-6.209	-3.428	2.780	118	1366
	2	Ι	1	C_{S}	-30151.780	-4.619	-6.239	-3.363	2.876	195	1554
		II	1	C_{S}	-30151.333	-4.569	-5.385	-2.852	2.533	233	1593
		III	1	CS	-30151.145	-4.549	-5.790	-3.920	1.870	71	1481
		IV	1	C_{S}	-30151.026	-4.535	-6.624	-4.273	2.352	69	1703
		V	1	C_{S}	-30149.987	-4.420	-4.764	-3.272	1.492	126	1596
		VI	1	C_{S}	-30149.524	-4.368	-6.180	-1.505	4.675	87	1601
		VII	1	C_2	-30148.506	-4.255	-5.933	-4.293	1.640	353 ⁽¹⁾	1247
		VIII	1	C_{S}	-30148.039	-4.203	-5.818	-3.732	2.085	11	1720
		IX	1	C_{S}	-30147.949	-4.193	-5.848	-3.938	1.911	160	1509
		Х	1	C_S	-30147.444	-4.137	-5.463	-3.686	1.776	31	2272
		XI	1	C_{S}	-30147.417	-4.134	-5.468	-3.547	1.921	42	2290
		XII	1	C_{S}	-30147.038	-4.092	-5.965	-3.761	2.204	60	2280
		XIII	1	C_{S}	-30145.281	-3.897	-6.832	-3.960	2.873	33	1639
	3	Ι	2	C_{S}	-31643.671	-4.769	-6.183	-3.303	2.880	97	1591
		II	2	C_{S}	-31643.487	-4.751	-5.104	-2.815	2.289	164	1570
		III	2	~	-31643.381	-4.740	-4.982	-2.840	2.142	178	1608
		IV	2	C_{S}	-31642.908	-4.693	-5.646	-3.498	2.148	176	1712
		V	2	$\tilde{C_s}$	-31642.809	-4.683	-6.193	-4.246	1.947	54	1650
		VI	2	Čs	-31641.175	-4.519	-4.635	-3.077	1.558	66	1749
	4	Ι	1	$\tilde{C_s}$	-33136.278	-4.957	-5.646	-3.223	2.422	23	1795
		II	1	$\tilde{C_s}$	-33135.882	-4.921	-5.372	-3.045	2.327	136	1693
		III	1	5	-33135.657	-4.900	-5.253	-2.575	2.678	136 ⁽¹⁾	1718
		IV	1	C_{S}	-33135.142	-4.853	-4.845	-2.928	1.917	124	1728
		V	1	Čs	-33133.584	-4.712	-8.706	-3.228	5.478	125	1694
		VI	1	Čs	-33133.368	-4.692	-6.095	-3.984	2.111	36	2412
		VII	1	C_2	-33131 582	-4 530	-5 829	-4 635	1 1 9 4	56	1786
		VIII	1	Č _s	-33130.146	-4.399	-6.198	-3.308	2.890	152	1731
		IX	1	C _s	-33129 759	-4 364	-6 307	-3 589	2 719	46	1493
		X	1	C _s	-33129 502	-4 341	-6 271	-3 861	2 411	51	1768
		XI	1	C _s	-33129 350	-4 327	-5 710	-3 613	2.097	75	1722
		XII	1	C _s	-33128 974	-4 293	-5 498	-3 754	1 744	38	2308
		XIII	1	C _s	-33128 370	-4 238	-5 902	-3 743	2.159	37	2332
	5	I	2	C _s	-34629.085	-5 130	-6 377	-3 555	2.822	32	2431
	U	П	2	C_{c}	-34628 380	-5 071	-4 713	-1 954	2.022	$116^{(1)}$	1891
		ш	2	$C_{\rm c}$	-34625 157	-4 802	-5 415	-3 079	2 3 3 6	98	1875
		IV	$\frac{2}{2}$	C_{c}	-34624 522	-4 750	-5 433	-3 704	1 729	102	1835
		V	$\frac{2}{2}$	C_{s}	-34624.440	-4 743	-5 837	_2 848	2 989	136	1381
		VI	$\frac{2}{2}$	C_{s}	-34622 097	-4 547	-5.881	-3.690	2.909	79	1623
		VII	$\frac{2}{2}$	C_{s}	-34621 506	-4.347 _1 108	-5.001	-3.090	2.191	12	1823
6	6	T	2 1	C_{s}	-36121.300	-4.490	-6 102	-3.102	2.475	52	1025
0	U	т П	1 1	C_{-}	-36121.232	-5.225	-0.195	-3.419	∠.//4 2.168	52 12	1821
		ш	1 1	C_{S}	-36120.019	-5.174	-6.040	-2.133	2.100 2 1 5 2	12 60	18/18
		111 [V/	1 1	C_{S}	-36120.103	-5.145	-0.040	-3.00/	2.133	25	1040
		I V V	1 1	C_{S}	-30119.098	-3.107	-0.120 5 205	-J.494 2 111	2.034	33 40	1765
		V VI	1	C_{S}	-36110.0/0	-3.044	-5.205	-3.114	2.090 2.226	40 20	1720
		VI	1 1	C_2	-30110.742	-3.034	-5.415	2 000	2.330 1.076	20 27	1732
		V 11 V/111	1	C_{S}	-3011/.///	-4.900	-4.998 6 011	-3.022	1.7/0)/C 2/0	1/43
		V 111	1	\cup_{S}	-30117.320	-4.923	-0.241	-3.024	∠.010	∠4ð	1303

Tablo 3.13. Ti₁B₆N_z ($z \le 6$) Topakları İçin Hesaplanan Nicelikler

		~					1 0 0 0		10.10
IX	1	C_{S}	-36114.507	-4.708	-7.579	-5.779	1.800	62	1843
Х	1	C_{S}	-36113.898	-4.661	-6.163	-3.413	2.750	93	1658
XI	1	C_S	-36113.812	-4.655	-6.254	-3.246	3.009	116	1693
XII	1	C_{S}	-36110.671	-4.413	-5.530	-3.864	1.667	30	2321
XIII	1	C_{S}	-36110.535	-4.403	-5.937	-3.144	2.794	75	1904
XIV	1	Cs	-36109.830	-4.348	-6.304	-3.280	3.024	55	1798

Aynı seride 2-XIII izomerinde N atomları ayrı olmasına rağmen kararlılığı en düşük yapıdadır. Bunun sebebi B₃ uydu topak parçasının ana yapıdan ayrışık davranması olabilir. TiB₆N₃ topağının izomerlerine baktığımızda en kararlı olan izomerde B atomlarının ayrı ayrı bağlandığı görüldü. TiB₆N₃ topağının diğer izomerlerinde N atomlarının borlar arasına yerleştiği yada Ti ile bağ yaptığı izomerler elde edildi. TiB₆N₄ topağının en kararlı izomerinin B-N halkasının ortasında Ti bulunmaktadır. Dördüncü N atomu da iki B atomuna tutunmuştur. Bu N atomunun bağlı olduğu borların titanyumdan kısmen uzaklaşarak bağlandığı görüldü. TiB₆N₅ topağının en kararlı izomeri TiB₆N₃-I topağından büyümektedir. Yapıda N atomlarının birbirinden ayrışarak borlar arasında bağlanmayı tercih ettiği gözlendi. TiB₆N₆ topağının izomerler N-B şeklinde sıralanarak halka meydana gelmiştir. Diğer izomerlerde de yine N atomları B atomları arasına girerek bağlandı. Bu topaklarda çoğunlukla C_S simetrisi gözlendi. Sadece üç topakta negatif frekans ortaya çıktı ve bunlarda en kararlı izomerler değildir.

3.4.7. Enerji Analizleri

Buraya kadar sunulan geometri ve bu geometrilere ait hesaplanan nicelikler üzerinden analizler yapılacaktır. Şekil 3.21'de Ti₁B_yN_z (y,z≤6) topaklarının en kararlı izomerleri için N sayısının fonksiyonu olarak çizilen atom başına ortalama bağlanma enerjileri görülmektedir. Yapı içerisinde üç farklı türden atom olması sebebiyle, elde edilen bu enerjiler her bir atomun bağ enerjisi olarak kabul edilmemelidir. Ortalama bir değer olarak değerlendirilerek topak büyüklüğü ile değişimi incelenebilmektedir. Aynı tip atomlar için bu nicelik daha yaygın kullanılmaktadır. O durumda dahi, yapı içerisinde topağın iç kısmında ve yüzeyinde bulunan atomun bağlanma enerjilerinin farklı olacağını düşünürsek, yine yaklaşık bir değer olduğu anlaşılmaktadır. Şekil 3.21' de görüldüğü gibi dalgalanmalar olmakla birlikte N artışı ile bağlanma enerjisinin azaldığı gözlenmektedir. B sayısının y=3-6 olduğu durumlarda birbirine yakın eğilim görülmekte ve dalgalanmalar azalmaktadır. Tüm topaklara bakıldığında $Ti_1B_4N_5$ topağının atom başına ortalama bağlanma enerjisinin diğer topaklara göre en düşük değere sahip olduğu görülmektedir. Özellikle $Ti_1B_yN_z$ (y=1,2,3) serisindeki topaklarda dalgalanmalar daha fazla iken $Ti_1B_yN_z$ (y=4,5,6) topaklarında yapıya N ve B atomu eklendikçe yapıların atom başına ortalama bağlanma enerjisinde düşüş görüldü. $Ti_1B_1N_2$, $Ti_1B_1N_4$, $Ti_1B_1N_6$, $Ti_1B_2N_3$, $Ti_1B_2N_6$, $Ti_1B_3N_4$, $Ti_1B_3N_6$ topakları seri içindeki komşu topaklarına göre, daha düşük enerji değerlerine sahiptir.

Şekil 3.21. Ti₁B_yN_z (y,z≤6) Topaklarının Atom Başına Ortalama Bağlanma Enerjileri

Şekil 3.22'de Ti₁B_yN_z (y,z≤6) topaklarının en kararlı izomerleri için B artışına göre çizilen atom başına ortalama bağlanma enerjilerine bakıldığında seri içinde dalgalanmalar olmaktadır. Ancak N atomunda olduğu kadar olmamaktadır. Genel olarak ortalama bağlanma enerjisinin düştüğü görülmektedir. Yapıya N ilavesinde azotun p orbitallerinde bulunan elektronlarıyla titanyumun d orbitallerinde bulunan elektronlarının güçlü hibritleşme özelliği sebebiyle B atomuna göre yapıdaki atom başına ortalama bağlanma enerjisinde daha etkili olması beklenen bir sonuçtur.

Şekil 3.22. Ti₁B_yN_z (y,z≤6) Topaklarının Atom Başına Ortalama Bağlanma Enerjileri

B ve N artışının etkilerini bir arada görebilmek için eş yüzey eğrileri kullanıldı. Şekil 3.23'de B ve N değişimine göre atom başına bağlanma enerjileri verildi. Buradan görüleceği üzere koyu renkte olan çukurlar enerjinin düşük olduğu, açık renkte olan çukurlar ise enerjinin yüksek olduğu bölgelerdir. Atom başına bağlanma enerjisinin yapıda 4 B, 5 N ve 6 B 6 N atomu olduğu bölgelerde daha düşük olduğu çukurlardır ve yaklaşık 5.0 eV civarındadır. Yapıda tek N atomu varken B atomunun artışında enerjinin yüksek olduğu anlaşılmaktadır.

Topakların parçalanmaya karşı daha kararlı olanların belirlenmesinde kullanışlı olan bir nicelikte toplam enerjiler üzerinden hesaplanan ikinci enerji farklarıdır. Komşu yapılarına göre bağıl olarak yüksek kararlılığın belirlendiği ikinci enerji farkları Ti₁B_yN_z (y,z≤6) topakları için Şekil 3.24'de verildi. Ti₁B₁N₂, Ti₁B₁N₄, Ti₁B₂N₃, Ti₁B₃N₂, Ti₁B₃N₄, Ti₁B₄N₂ ve Ti₁B₄N₅ topaklarının komşu topaklara göre bağıl olarak daha kararlı olduğu görüldü. $Ti_1B_5N_z$ ve $Ti_1B_6N_z$ serilerinde belirgin bir minimum veya maksimum değerler gözlenmedi.

Şekil 3.23. Ti₁B_yN_z (y,z≤6) Topaklarının Atom Başına Ortalama Bağlanma Enerjileri

Şekil 3.24. Ti₁B_yN_z (y,z≤6) Topaklarının İkinci Enerji Farkları

Bir molekülün kimyasal kararlılığının yani reaksiyon yapmada yapısal kararlılığının korunduğunu anlamada, HOMO ve LUMO enerji seviyeleri arasındaki fark önemli bilgiler veren bir niceliktir. Şekil 3.25'de Ti₁B_yN_z (y,z≤6) topaklarının en kararlı izomerleri için hesaplanan HOMO-LUMO enerji aralıkları görülmektedir. Bu topaklarda Ti₁B₂N₂, Ti₁B₃N₃ ve Ti₁B₅N₅ topaklarının HOMO-LUMO enerji aralıklarının seri içindeki komşu topaklara göre daha küçük olduğu görüldü. Bu topaklarda en yüksek dolu orbitalden, en düşük boş orbitale elektron geçişi daha kolay olacağından tepkimeye girme eğilimi diğer topaklara göre daha fazla olduğu anlaşılmaktadır. Şekil 3.25'den görüleceği üzere HOMO-LUMO enerji aralığı en yüksek topak Ti₁B₄N₆'dır. İkinci enerji fark değerlerini incelediğimiz bu topaklarda yine aynı topağın (Ti₁B₄N₆) enerjisinin yüksek, yani diğer topaklara göre daha kararlı bir yapıya sahip olduğu görüldü. Dolayısıyla bu topak için de tepkimeye girme isteği az ve kimyasal olarak sert olduğu söylenebilir. Diğer topakların HOMO-LUMO enerji aralıklarında çok büyük farklılıklar olmamakla beraber, 1.9-3.2 eV aralığındadır.

Şekil 3.25. Ti₁B_yN_z (y,z≤6) Topaklarının HOMO-LUMO Enerji Aralıkları

Yapı üzerindeki elektron dağılımlarını görmek için HOMO-LUMO bulutları da çizildi. Ti₁B_yN_z (y, z \leq 6) topaklarının en kararlı izomerleri için HOMO-LUMO bulutları Şekil 3.26-3.28' te görülmektedir. Bu topakların elektron yoğunluklarına bakıldığında genel olarak HOMO ve LUMO elektron yoğunluğun Ti etrafında toplandığı görülmektedir.

Şekil 3.26. Ti₁B_yN_z (y=1, 2, z≤6) Topaklarının HOMO-LUMO Bulutları

Şekil 3.27. Ti₁B_yN_z (y=3, 4, z≤6) Topaklarının HOMO-LUMO Bulutları

Şekil 3.28. Ti₁B_yN_z (y=5, 6, z≤6) Topaklarının HOMO-LUMO Bulutları

Atomlar üzerindeki yük değişimleri de incelendi. Şekil 3.29'da Ti₁B_yN_z (y,z≤6) topaklarında Ti, N ve B atomları üzerindeki toplam atomik yükler verildi. Ti atomlarının elektron verici, N atomlarının elektron alıcı ve B atomlarının ise hem elektron alıcı hem elektron verici bir davranış sergilediği görüldü. Tek N atomu olduğunda B ve N atomları üzerindeki yükler birbirine oldukça yakındır. Bazı yapılarda yapıya bağlanan N atomu arttıkça borlar titanyumla değil de N atomlarıyla daha fazla etkileşime girdiğinden dolayı B atomunun elektron alıcı durumdan elektron verici duruma geçtiği gözlendi.

Şekil 3.29. Ti₁ B_yN_z (y,z≤6) Topaklarında Ti, N ve B atomları Üzerindeki Toplam Atomik Yükler

İncelenen topaklardan elektron kopartılması veya eklenmesi durumunda enerji değişimlerine bakılarak molekülün elektron kaybetme ve elektron tutma özellikleri de incelenebilmektedir. İyonlaşma enerjisi bir atom ya da molekülden elektron koparmak için verilmesi gereken enerjidir. Molekül elektron verdikten sonra geometrisini değiştirebilmekte ve daha düşük enerjili bir hale geçmektedir. İyonlaşma enerjisi eğer molekül geometrisini değiştirmeden sadece elektronun molekülden atılması ile hesaplanarak (aynı geometri üzerinde olduğumuz için) VIP denir. Şekil 3.30'da Ti₁B_yN_z topakları için hesaplanan VIP değerleri elde edildi.

görülmektedir. Bu grafiğe baktığımızda Ti₁B_yN_z topakları için hesaplanan HOMO-LUMO enerji aralıklarıyla (Şekil 3.25) benzerlik göstermektedir. HOMO-LUMO enerji aralığı küçük olan topakların iyonlaşma enerjileri için de daha az enerji gerektiği açıkça anlaşılmaktadır. HOMO-LUMO enerji aralığı küçük olan Ti₁B₂N₂, Ti₁B₃N₃ ve Ti₁B₅N₅ topaklarının burada da iyonlaşma enerjilerinin daha düşük olduğu görülmektedir. HOMO-LUMO enerji aralığı en yüksek olan Ti₁B₄N₆ topağının Şekil 3.30'de görüldüğü gibi iyonlaşma enerjisinin de en yüksek olduğu görüldü. Bu sebeple Ti₁B₄N₆ topağından bir elektron koparmak için diğer topaklara göre daha fazla enerji verilmelidir. HOMO-LUMO enerji aralığı büyük olan yapılarda HOMO seviyesinden LUMO seviyesine elektron geçişi zor olduğundan, bu yapılardan elektron koparmak yani serbest hale getirmek için daha fazla enerji gerekmektedir.

Şekil 3.30. Ti₁ByNz (y,z≤6) Topaklarında Vertical (Doğrudan) İyonlaşma Enerjisi (VIP)

Elektronun sisteme ne kadar sağlam bağlandığını ortaya çıkarmak için VEA değerleri de hesaplandı. Yapıya bir elektron ilave edildiğinde geometrisi değişmeden hesap yapılarak VEA elde edildi. Şekil 3.31'de $Ti_1B_yN_z$ (y,z≤6) topakları için

hesaplanan VEA değerleri görülmektedir. Hesaplanan enerji değerleri genel olarak yapı içerisinde B ve N atomlarının sayısı çift olduğunda daha büyüktür. Tüm topaklar içinde en yüksek elektron ilgisi $Ti_1B_5N_6$ topağında gözlendi.

Z Şekil 3.31. Ti₁B_yN_z (y,z≤6) Topaklarında Vertical (Doğrudan) Elektron İlgisi

VIP ve VEA değerleri kullanılarak kimyasal sertlik hesabı da yapıldı. Kimyasal sertlik yapının tepkimeye girme eğiliminin düşük olduğunu ifade eder. $Ti_1B_yN_z$ topakları için hesaplamış olduğumuz kimyasal sertlik değerleri Şekil 3.29' da verildi. $Ti_1B_1N_1$, $Ti_1B_5N_5$ ve $Ti_1B_5N_6$ topaklarının diğer topaklara nazaran kimyasal sertliği düşük çıkmıştır. Kimyasal reaksiyona giren iki yapıdan hangisinin elektron vereceği, hangisinin ise elektron alacağı sadece iyonlaşma enerjisi ya da elektron ilgisiyle belirlenememektedir. İyonlaşma enerjisi ve elektron ilgisini birlikte içeren elektronegatiflik ile bu özellik belirlenebilmektedir [57]. Elektronegatifliği küçük olan molekülden elektron kaybının daha kolay olacağı [57] göz önünde bulundurulur. Şekil 3.33'de verilen $Ti_1B_yN_z$ (y,z≤6) topaklarının elektronegatifliklerine bakılırsa: $Ti_1B_1N_z$ topaklarında; z=2, 4, 6, $Ti_1B_2N_z$ topaklarında; z=2, 5, 6, $Ti_1B_3N_z$

topaklarında; z=3, 4, Ti₁B₄N_z topaklarında; z=1, 3, 5, Ti₁B₅N_z topaklarında; z=2, 4, 5 ve Ti₁B₆N_z topaklarında; z=1-4, 6 yapılarında elektron kaybının daha kolay olacağı anlaşılmaktadır. Diğer topakların elektronegatifliklerinin yüksek olduğu görülmektedir. Genel olarak tüm topakları incelediğimizde en kolay elektron verecek topağın 7.804 eV elektronegatiflik değeri ile Ti₁B₅N₅, en zor elektron koparılabilecek topağın ise 12.015 eV ile Ti₁B₄N₆ olduğu görüldü. Bu yapıların geometrilerine bakıldığında (Şekil 3.18, Şekil 3.19) TiB₄N₆ yapısında N ve borların sıralı olarak halka biçiminde dizildiği, B ve N atomlarından da titanyuma bağlandıkları görülmektedir.

Şekil 3.32. Ti₁B_yN_z (y,z≤6) Topakları İçin Hesaplanan Kimyasal Sertlik

Z Şekil 3.33. Ti₁B_yN_z (y,z≤6) Topakları İçin Hesaplanan Elektronegatiflik

Burada çalışılan Ti-B-N sistemlerinin N atomlarını bırakma mekanizmaları da incelendi. Ti₁B_yN_z topaklarının en kararlı izomerleri üzerinden N, 2N, N₂, N+N₂ ve 2N₂ ayrışma kanalları için enerji hesabı yapıldı. Tablo 3.14'de verilen bu ayrışma kanallarına ait enerjilere baktığımızda, tek başına N ayrışma enerjisinin moleküler olarak ayrışma enerjisinden daha büyüktür. Bu topaklarda yapı-N ayrışmalarında Ti₁B₄N₅ topağını Ti₁B₄N₅+N olarak neden ayrıştırmak için daha fazla enerji gerektiği gözlendi. Bu yapının geometrisine bakıldığında B ve N'lerin B-N şeklinde sıralı olarak Ti etrafında halka yapıda dizildikleri görülmektedir (Şekil 3.18). Bu sebeple bu yapıdan N atomunu koparmanın daha zor olduğu anlaşılmaktadır. İki N atomunun molekül olarak değil de parçalı ayrışma kanallarına bakıldığında N, N₂, N+N₂ ayrışma enerjilerine göre daha fazla enerji gerektiği görüldü. Ayrıca 2N kopmasında N sayısının sabit tutulduğu, B atomunun sayısı arttıkça enerjinin arttığı (Ti₁B₂N₅ yapısı hariç) ortaya çıktı.

Tablo 3.14. $Ti_1B_yN_z$ (y,z \leq 6) Topaklarının En Kararlı İzomerler Üzerinden Hesaplanan Ayrışma Kanalları

	Ayrışma		Ayrışma
Reaksiyon	Enerjisi	Reaksiyon	Enerjisi
-	(eV)	-	(eV)
$Ti_1B_1N_2 \rightarrow Ti_1B_1N_1 + N$	-6.432	$Ti_1B_4N_2 \rightarrow Ti_1B_4N_1 + N$	-7.596
$Ti_1B_1N_3 \rightarrow Ti_1B_1N_2 + N$	-3.412	$Ti_1B_4N_3 \rightarrow Ti_1B_4N_2 + N$	-5.986
$Ti_1B_1N_3 \rightarrow Ti_1B_1N_1 + 2N$	-9.844	$Ti_1B_4N_3 \rightarrow Ti_1B_4N_1 + 2N$	-13.581
$Ti_1B_1N_3 \rightarrow Ti_1B_1N_1 + N_2$	-0.247	$Ti_1B_4N_3 \rightarrow Ti_1B_4N_1 + N_2$	-3.984
$Ti_1B_1N_4 \rightarrow Ti_1B_1N_3 + N$	-6.658	$Ti_1B_4N_4 \rightarrow Ti_1B_4N_3 + N$	-6.627
$Ti_1B_1N_4 \rightarrow Ti_1B_1N_2 + 2N$	-10.070	$Ti_1B_4N_4 \rightarrow Ti_1B_4N_2 + 2N$	-12.612
$Ti_1B_1N_4 \rightarrow Ti_1B_1N_2 + N_2$	-0.473	$Ti_1B_4N_4 \rightarrow Ti_1B_4N_2 + N_2$	-3.015
$Ti_1B_1N_4 \rightarrow Ti_1B_1N_1 + N + N_2$	-6.905	$Ti_1B_4N_4 \rightarrow Ti_1B_4N_1 + N + N_2$	-10.611
$Ti_1B_1N_5 \rightarrow Ti_1B_1N_4 + N$	-3.493	$Ti_1B_4N_5 \rightarrow Ti_1B_4N_4 + N$	-8.606
$Ti_1B_1N_5 \rightarrow Ti_1B_1N_3 + 2N$	-10.151	$Ti_1B_4N_5 \rightarrow Ti_1B_4N_3 + 2N$	-15.233
$Ti_1B_1N_5 \rightarrow Ti_1B_1N_3 + N_2$	-0.554	$Ti_1B_4N_5 \rightarrow Ti_1B_4N_3 + N_2$	-5.636
$Ti_1B_1N_5 \rightarrow Ti_1B_1N_2 + N + N_2$	-3.966	$Ti_1B_4N_5 \rightarrow Ti_1B_4N_2 + N + N_2$	-11.622
$Ti_1B_1N_6 \rightarrow Ti_1B_1N_5 + N$	-6.759	$Ti_1B_4N_6 \rightarrow Ti_1B_4N_5 + N$	-1.781
$Ti_1B_1N_6 \rightarrow Ti_1B_1N_4 + 2N$	-10.251	$Ti_1B_4N_6 \rightarrow Ti_1B_4N_4 + 2N$	-10.387
$Ti_1B_1N_6 \rightarrow Ti_1B_1N_4 + N_2$	-0.654	$Ti_1B_4N_6 \rightarrow Ti_1B_4N_4 + N_2$	-0.790
$Ti_1B_1N_6 \rightarrow Ti_1B_1N_3 + N + N_2$	-7.312	$Ti_1B_4N_6 \rightarrow Ti_1B_4N_3 + N + N_2$	-7.417
$Ti_1B_1N_6 \rightarrow Ti_1B_1N_4 + 2N_2$	-1.128	$Ti_1B_4N_6 \rightarrow Ti_1B_4N_4 + 2N_2$	-3.806
$Ti_1B_2N_2 \rightarrow Ti_1B_2N_1 + N$	-7.426	$Ti_1B_5N_2 \rightarrow Ti_1B_5N_1 + N$	-7.403
$Ti_1B_2N_3 \rightarrow Ti_1B_2N_2 + N$	-7.498	$Ti_1B_5N_3 \rightarrow Ti_1B_5N_2 + N$	-6.819
$Ti_1B_2N_3 \rightarrow Ti_1B_2N_1 + 2N$	-14.923	$Ti_1B_5N_3 \rightarrow Ti_1B_5N_1 + 2N$	-14.222
$Ti_1B_2N_3 \rightarrow Ti_1B_2N_1 + N_2$	-5.326	$Ti_1B_5N_3 \rightarrow Ti_1B_5N_1 + N_2$	-4.625
$Ti_1B_2N_4 \rightarrow Ti_1B_2N_3 + N$	-3.008	$Ti_1B_5N_4 \rightarrow Ti_1B_5N_3 + N$	-6.815
$Ti_1B_2N_4 \rightarrow Ti_1B_2N_2 + 2N$	-10.506	$Ti_1B_5N_4 \rightarrow Ti_1B_5N_2 + 2N$	-13.634
$Ti_1B_2N_4 \rightarrow Ti_1B_2N_2 + N_2$	-0.909	$Ti_1B_5N_4 \rightarrow Ti_1B_5N_2 + N_2$	-4.037
$Ti_1B_2N_4 \rightarrow Ti_1B_2N_1 + N + N_2$	-8.335	$Ti_1B_5N_4 \rightarrow Ti_1B_5N_1 + N + N_2$	-11.440
$Ti_1B_2N_5 \rightarrow Ti_1B_2N_4 + N$	-3.400	$Ti_1B_5N_5 \rightarrow Ti_1B_5N_4 + N$	-6.615
$Ti_1B_2N_5 \rightarrow Ti_1B_2N_3 + 2N$	-6.408	$Ti_1B_5N_5 \rightarrow Ti_1B_5N_3 + 2N$	-13.430
$Ti_1B_2N_5 \rightarrow Ti_1B_2N_3 + N_2$	3.189	$Ti_1B_5N_5 \rightarrow Ti_1B_5N_3 + N_2$	-3.833
$Ti_1B_2N_5 \rightarrow Ti_1B_2N_2 + N + N_2$	-4.309	$Ti_1B_5N_5 \rightarrow Ti_1B_5N_2 + N + N_2$	-10.652
$Ti_1B_2N_6 \rightarrow Ti_1B_2N_5 + N$	-6.764	$Ti_1B_5N_6 \rightarrow Ti_1B_5N_5 + N$	-5.836
$Ti_1B_2N_6 \rightarrow Ti_1B_2N_4 + 2N$	-10.164	$Ti_1B_5N_6 \rightarrow Ti_1B_5N_4 + 2N$	-12.450
$Ti_1B_2N_6 \rightarrow Ti_1B_2N_4 + N_2$	-0.567	$Ti_1B_5N_6 \rightarrow Ti_1B_5N_4 + N_2$	-2.853
$Ti_1B_2N_6 \rightarrow Ti_1B_2N_3 + N + N_2$	-3.575	$Ti_1B_5N_6 \rightarrow Ti_1B_5N_3 + N + N_2$	-9.668
$Ti_1B_2N_6 \rightarrow Ti_1B_2N_4 + 2N_2$	-1.476	$T1_1B_5N_6 \rightarrow T1_1B_5N_4 + 2N_2$	-6.890
$T_{1_1}B_3N_2 \rightarrow T_{1_1}B_3N_1 + N$	-7.009	$T_{1_1}B_6N_2 \rightarrow T_{1_1}B_6N_1 + N_1$	-7.278
$T_{1_1}B_3N_3 \rightarrow T_{1_1}B_3N_2 + N$	-6.576	$T_{1_1}B_6N_3 \rightarrow T_{1_1}B_6N_2 + N$	-6.118
$T_{1_1}B_3N_3 \rightarrow T_{1_1}B_3N_1 + 2N$	-13.585	$T_{1_1}B_6N_3 \rightarrow T_{1_1}B_6N_1 + 2N$	-13.396
$T_{1_1}B_3N_3 \rightarrow T_{1_1}B_3N_1 + N_2$	-3.988	$T_{1_1}B_6N_3 \rightarrow T_{1_1}B_6N_1 + N_2$	-3.799
$T_{1_1}B_3N_4 \rightarrow T_{1_1}B_3N_3 + N$	-7.958	$T_{1_1}B_6N_4 \rightarrow T_{1_1}B_6N_3 + N$	-6.835
$T_{1_1}B_3N_4 \rightarrow T_{1_1}B_3N_2 + 2N$	-14.534	$T_{1_1}B_6N_4 \rightarrow T_{1_1}B_6N_2 + 2N$	-12.953
$11_1B_3N_4 \rightarrow 11_1B_3N_2 + N_2$	-4.937	$I_{1_1}B_6N_4 \rightarrow I_{1_1}B_6N_2 + N_2$	-3.356
$I_{1_1}B_3N_4 \rightarrow I_{1_1}B_3N_1 + N + N_2$	-11.946	$I_{1_1}B_6N_4 \rightarrow I_{1_1}B_6N_1 + N + N_2$	-10.633
$I_{1_1}B_3N_5 \rightarrow I_{1_1}B_3N_4 + N$	-2.657	$I_{1_1}B_6N_5 \rightarrow I_{1_1}B_6N_4 + N$	-7.034
$11_1B_3N_5 \rightarrow 11_1B_3N_3 + 2N$	-10.615	$11_1B_6N_5 \rightarrow 11_1B_6N_3 + 2N$	-13.869
$11_1B_3N_5 \rightarrow 11_1B_3N_3 + N_2$	-1.018	$11_1B_6N_5 \rightarrow 11_1B_6N_3 + N_2$	-4.272
$11_1B_3N_5 \rightarrow 11_1B_3N_2 + N + N_2$	-7.594	$11_1B_6N_5 \rightarrow 11_1B_6N_2 + N + N_2$	-10.390
$11_1B_3N_6 \rightarrow 11_1B_3N_5 + N$	-7.352	$11_1B_6N_6 \rightarrow 11_1B_6N_5 + N$	-6.3/4
$11_1B_3N_6 \rightarrow 11_1B_3N_4 + 2N$	-10.009	$11_1B_6N_6 \rightarrow 11_1B_6N_4 + 2N$	-13.408
$I_{1_1}B_3N_6 \rightarrow I_{1_1}B_3N_4 + N_2$	-0.412	$11_1B_6N_6 \rightarrow 11_1B_6N_4 + N_2$	-3.811
$11_1B_3N_6 \rightarrow 11_1B_3N_3 + N + N_2$	-8.371	$11_1B_6N_6 \rightarrow 11_1B_6N_3 + N + N_2$	-10.645
$I_1B_3N_6 \rightarrow I_1B_3N_4 + 2N_2$	-5.350	$I_{1_1}B_6N_6 \rightarrow I_{1_1}B_6N_4 + 2N_2$	-7.166

Moleküler ayrışma enerjilerine baktığımızda da Ti₁B₂N₃ topağının Ti₁B₂N₁+N₂ olarak ayrışma enerjisinin diğer topaklara göre daha büyük olduğu görüldü. Yine bu yapının geometrisine baktığımızda N atomlarının moleküler olarak değil de ayrı ayrı aralarına B atomlarını alarak bağlandığı görülmektedir (Şekil 3.16). Bu sebeple bu yapıda Ti₁B₂N₁+N₂ şeklinde ayrıştırma zordur. TiB₂N₅ \rightarrow Ti₁B₂N₃+N₂ ayrışma enerjisinde pozitif enerji değeri göze çarpmaktadır. TiB₂N₅ topağının geometrisine baktığımızda 3 N atomu Ti'ye borlarla birlikte bağlanırken 2 N atomu N₂ halinde Ti atomuna bağlanmıştır (Şekil 3.16). Bu sebeple TiB₂N₅ topağını Ti₁B₂N₃+N₂ olarak ayırmak için dışarıdan bir enerji verilmeden ayrışabileceği ve N₂ molekülünün zayıf etkileştiği açıkça görülmektedir. TiB_yN₆ (y=1-6) topaklarını Ti₁B_yN₂+2N₂ olarak ayrıştırmak için gerekli enerjinin y arttıkça yani yapıya eklenen B atomu arttıkça artmaktadır. Bu yapıların geometrilerine bakıldığında yapıda bir ve iki B atomu olduğunda N atomları N₂ olarak moleküler halde bağlanırken, üç B atomundan sonra artık N'lerin B atomları arasına girerek sıralı bağlanmayı tercih ettiği görüldü. Dolayısıyla bu yapılardan N atomlarını moleküler halde koparmak daha zordur.

4. SONUÇ ve ÖNERİLER

Bu çalışmada, Ti, B ve N atomları kullanılarak oluşturulan B_yN_{6-y} (y≤6) , (BN)_y (y \leq 12) sistemleri (30 yapı), Ti_x (x=1-8) topakları (12 yapı) ve bu topaklara N₂ bağlanarak oluşturulan Ti_xN₂ (x=1-8) (17 yapı) sistemleri ile Ti₁B_yN_z (y,z≤6) (351 yapı) topaklarının analizleri YFT/B3LYP/6-311++g** ile Gaussian paket programı kullanılarak yapıldı. Literatürde yapılan benzer çalışmalarla kıyaslama yapılarak [58, 59, 62] tek ve iki atomlu sistemler için ulaşılan sonuçların literatürle uyumlu olması ve daha önce yapılan bor çalışmalarında [4-8, 63, 64] aynı baz setinin kullanılması sebebiyle seçilen baz setinin bu çalışma için uygun olduğu sonucuna varıldı. İki atomlu sistemler için bağ enerjisinin düşükten yükseğe N₂<TiN<BN<Ti₂<TiB<B₂ olarak değiştiği gözlendi. Bu sıralama minimum enerji çukuru düşük olanın yani negatif değer olarak bağ enerjisi düşük olanın (N2), daha kuvvetli bağlandığını gösterir. Bu ikili etkileşmelerde yapıda N atomu olduğunda bağ enerjisinin daha düşük olduğu görüldü. B_vN_{6-v} (y≤6) halka yapıları için yapılan analizler sonucunda, B ve N atomlarının halka yapıda bir N bir B atomu olacak şekilde yerleşerek oluşturduğu B₃N₃ topağının, diğer yapılara göre bağlanma enerjisinin daha düşük, ve HOMO-LUMO enerji aralığının daha yüksek olduğu gözlendi.

İki düzlemsel halkanın üst üste gelmesi ile oluşan ve nanotüpler için temel taşı kabul edilebilecek biçimde olan $(BN)_y$ (y \leq 12) özel halka yapılarında $(BN)_{12}$ yapısı diğer halka yapılara göre daha kararlı çıktı. Bu yapıların HOMO-LUMO enerji aralıklarının yapıya bağlanan B ve N atomu sayısı arttıkça artmaktadır. HOMO-LUMO enerji aralıkları 5.5-7 eV aralığında değişmektedir. Bu değer yalıtkanların HOMO-LUMO enerji aralığına yakındır.

Özel olarak incelediğimiz kafes yapıdaki Ti_x (x \leq 8) topakları için yapılan hesaplamalarda topak büyüdükçe bağlanma enerjisinin yoğun madde formundaki değerine yaklaşarak azaldığı N₂ molekülü bağlanmasıyla bu eğilimin sadece çift sayıdaki Ti topaklarında etkin olduğu gözlendi. Metal katkılı B topaklarında N₂ molekülünün yapıdan ayrışması için gerekli enerjinin yine çift sayıdaki Ti topaklarında daha fazla olduğu görüldü. Daha büyük topaklar üzerine yapılabilecek çalışmalarda topağın hangi büyüklükten sonra yoğun madde formundaki bağlanma enerjisi ile örtüştüğünü tespit etmek, incelenen sistemin topak bölgesinden yoğun madde bölgesine geçiş sınırını öngörmemize katkı sağlayabilecektir. N₂ molekülü bağlı tek sayıdaki Ti topaklarının HOMO-LUMO enerji aralıklarının diğer yapılara göre daha yüksek olduğu görüldü. Mikro topaklarını incelediğimiz Ti_x (x<8) ve N₂ katkılı komplekslerinde TiN sistemlerinin oluşum mekanizması ile ilgili çalışmalara katkı sağlayacağı düşüncesindeyiz.

Ti₁B_yN_z (y,z≤6) mikro topaklarıyla ilgili yapılan hesaplamalarda yapıda az sayıda N ve B atomu varken N'lerin moleküler halde borların da kendi aralarında bağ yapmayı tercih ettiği görüldü. Yapıya eklenen B ve N atomu sayısı artıkça; B ve N atomlarının B-N şeklinde yapı oluşturdukları ve Ti atomunun da bu halka yapıyı bozmadan halka yapıya dahil olduğu görüldü. Ti₁B₁N₂, Ti₁B₁N₄, Ti₁B₂N₃, Ti₁B₃N₂, Ti₁B₃N₄, Ti₁B₄N₂, Ti₁B₄N₅ topaklarının komşu topaklara göre bağıl olarak daha kararlı oldukları, N ve B artışı ile değişen atom başına ortalama bağlanma enerjilerinde genel eğilimin düşüş şeklinde olduğu gözlendi. Yapılan elektronegatiflik hesabına göre en kolay elektron verecek topağın Ti₁B₅N₅, en zor elektron koparılabilecek topağın da Ti₁B₄N₆ olduğu ortaya çıktı. Topaklarda yapı-N, 2N, N₂, N+N₂, 2N₂ ayrışma kanallarında; ayrışmaların zordan kolaya doğru sıralamasının, 2N, N+N₂, N, 2N₂ ve N₂ şeklinde değiştiği anlaşıldı. Yapıya N₂ molekül formunda bağlı iken, moleküler kopmada kolay olmaktadır.

Daha büyük Ti-B-N topaklarının parçalanarak daha küçük moleküllere ayrıştırıldıklarında enerji çukuru daha derin olan izomerlere gitmesi muhtemeldir. Burada tayin edilen kararlı topakların parçalanmalar sonucunda ortaya çıkacak ürün kompleksler olabileceği düşünülebilir. Tez kapsamında ulaşılan bulgular yeni çalışmalara ışık tutabileceği gibi Ti-B-N sistemleri ile ilgili çalışmalarda kaynak alınabilecek niteliktedir.

KAYNAKLAR

- 1. Böyukata, M., Molecular Dynamics Study of Possible Packing Sequence of Medium Size Gold Clusters: Au₂-Au₄₃, Physica E, 33, 182-190, 2006.
- 2. Böyükata, M., Güvenç, Z.B., MD Study of Energetics, Melting and Isomerization of Aluminum Microclusters, Brazilian Journal of Physics, 36, 720-724, 2006.
- 3. Böyükata, M., Molecular Dynamics Study of Ti_n, V_n and Cr_n Clusters", Journal of Theoretical & Computational Chemistry, 6, 81–97, 2007.
- 4. Böyükata, M., Güvenç, Z.B., Density Functional Study of AlB_n Clusters for n=1– 14, Journal of Alloys and Compounds, 509, 4214-4234, 2011.
- Böyükata, M., Güvenç, Z.B., DFT Study of Al Doped Cage B₁₂H_n Clusters, 36, 8392-8402, 2011.
- Böyükata, M., Özdoğan C., Güvenç, Z.B., An Investigation of Hydrogen Bonded Neutral B₄H_n (n=1-11) and Anionic B₄H₁₁⁻¹ Clusters: Density Functional Study, Journal of Moleculer Structure, THEOCHEM, 805, 91-100, 2007.
- Böyükata, M., Özdoğan C., Güvenç, Z.B., Effects of Hydrogen Hosting on Cage Structures of Boron Clusters: Density Functional Study of B_mH_n (m = 5–10 and n ≤ m) complexes, Physica Scripta, 77, 561–567, 2008.
- Böyükata, M., Özdoğan C., Güvenç, Z. B., Hydrogen Hosting on Nano Scale Boron Clusters, Romanian Journal of Information Science and Technology, 11, 59–70, 2008.
- 9. Himmel, H., Hübner, O., Klopper, W., Manceron, L., Cleavage of the N₂ Triple Bond by the Ti Dimer: A Route to Molecular Materials for Dinitrogen Activation?, Angewandte Chemie International Edition, 45, 2799 –2802, 2006.
- 10. Martin, T.P., Large Clusters of Atoms and Molecules, Netherlands, 1996.
- 11. Scoles, G., The Chemical Physics of Atomic and Molecular Clusters, North Holland, 1990.
- 12. Sugano, S., Nishina, Y., Ohnishi, S., Microclusters, Springer-Verlag, Berlin, 1987.
- Frisch, M.J. ve ark. Gaussian 03, revision D.01, Gaussian, Inc., Wallingford, CT, 2004.
- 14. Chemcraft, (http://www.chemcraftprog.com/), Version 1.6, Build 304, 2009.
- 15. Becke, A.D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Physical Review A, 38, 3098-3100, 1988.
- Lee, C., Yang, W., Parr, R. G., Development of The Colle-Salvetti Correlation-Energy Formula Into A Functional of The Electron Density, Physical Review B, 37, 785-789, 1988.

- 17. Donachie, M.J., Titanium: A Technical Guide, Metals Park, OH: ASM International, 11, 1988.
- Tarakeshvar. P., Kumar, T.J.D., Balakrishnan, N., Nature of Hydrogen Interaction and Saturation on Small Titanium Clusters, Journal of Physical Chemistry, 112, 2846-2854, 2008.
- 19. Titanium, Encyclopedia Britannica Concise, 2007.
- Panda, K.B., Ravi Chandran, K.S., First Principles Determination of Elastic Constants and Chemical Bonding of Titanium Boride (TiB) on the Basis of Density Functional Theory, Acta Materialia, 54, 1641–1657, 2009.
- Panda, K.B., Ravi Chandran, K.S., Determination of Elastic Constants of Titanium Diboride (TiB₂) from First Principles Using FLAPW Implementation of the Density Functional Theory, Computational Materials Science, 35, 134– 150, 2006.
- Peng, F., Fu, H.Z., Cheng, X. L., First-principles Calculations of Thermodynamic Properties of TiB₂ at High Pressure, Physica B, 400, 83–87, 2007.
- 23. Peters, J. S. Ve ark., Microstructure and Wear Resistance of Low Temperature Hot Pressed TiB₂, Wear, 266, 1171–1177, 2009.
- 24. Li, F., Zhao, J., Chen, Z., Hydrogen Storage Behavior of one-Dimensional TiB_x Chains, Nanotechnology, 21, 134006, 2010.
- 25. Bagheri, Z., Abolhassani, M.R., Hadipour, N. S., Density Functional Calculations on ¹¹B and ¹⁵N Chemical Shielding Tensors of Small Boron Nitride Nanotubes and Graphitic Sheet, Physica E, 41, 124-129, 2008.
- Deleuze, M.S., Giuffreda, M.G., François, J.P., Ionization Bands and Electron Affinities of Mixed Boron-Nitrogen B_nN_n Clusters (n =3,4,5), Journal Physical Chemistry A, 104, 1588-1596, 2000.
- Nigam, S., Kulshreshtha, S.K., Majumder, C., Structural and Magnetic Isomers of M(BN)₃₆ and M₄(BN)₃₆ Clusters (M=Ti,V,Cr, Mn, Fe, Co, Ni, Cu): An Ab Initio Density Functional Study, Physical Review B, 77, 075438-10, 2008.
- Nirmala, V., Kolandaivel, P., Structure and Electronic Properties of Armchair Boron Nitride Nanotubes, Journal of Moleculer Structure, THEOCHEM, 817, 137-145, 2007.
- Oku, T., Narita, I., Nishiwaki, A., Synthesis, Atomic Structures, and Electronic States of Boron Nitride Nanocage Clusters and Nanotubes, Materials and Manufacturing Processes, 19, 1215-1239,2009.
- 30. Pan, H., Feng, Y.P., Semiconductor Nanowires and Nanotubes: Effects of Size and Surface-to-Volume Ratio, ACS Nano, 2, 2410-2414, 2008.
- Sheichenko, D.M., Pokropivny, A.V., Pokropivny, V. V., Quantum Chemistry, Calculation of B_nN_n-rings (n=1-6) and Fulboranes, the Fullerene-like Molecules B_nN_n (n=12, 24, 60), Semiconductor Physics, 3, 545-549, 2000.

- Matus, M.H. ve ark., Reliable Predictions of the Thermochemistry of Boron-Nitrogen Hydrogen Storage Compounds: B_xN_xH_y, (x=2,3), Journal Physical Chemistry A, 111, 4411-4421, 2007.
- Wei, S.H., Zheng, Z., You, J.Q., Yan, X.H., Gong, X.G., A Density-Functional Study of Small Titanium Clusters, Journal of Chemical Physics., 113, 11127-11133, 2000.
- Du, J., Wang, H., Jiang, G., Structures of the Small Ti_n (n=2-5) Clusters: A DFT Study, Journal of Moleculer Structure, THEOCHEM, 817, 47-53,2007.
- 35. Castro, M. ve ark., Structural and Electronic Properties of Small Titanium Clusters: A Density Functional Theory And Anion Photoelectron Spectroscopy Study, Journal of Chemical Physics, 118, 2116-2123, 2003.
- 36. Villanueva, M.S. ve ark., Stable Ti_n (n=2-15) Clusters and Their Geometries: DFT Calculations, Journal of Physical Chemistry, 110, 10274-10278, 2006.
- 37. Zhao, J. ve ark., Geometric and Electronic Properties of Titanium Clusters Studied by Ultrasoft Pseudopotential, Solid State Communications, 118, 157-161, 2001.
- Cao, L. ve ark., Theoretical Study on The Interaction of Neutral and Charged Tin (n=1-7) Clusters With One Nitrogen Molecule, Journal of Moleculer Structure, THEOCHEM, 948, 65-70, 2010.
- 39. Reddy, B.V., Khanna, S.N., Structure and Stability of Ti_nN_m Clusters, Physical Review B, 54, 2240-2243, 1996.
- 40. Aleksandrov, H.A., Vayssilov, G.N., Ro1sch, N., Theoretical Investigation of the Coordination of N₂ Ligands to the Cluster Ni₃, Journal of Physical Chemistry,108, 61-27, 2004.
- 41. Reuse, F.A. ve ark., N₂ Adsorption Around Small Ni_n (n=2-4) Clusters, Chemical Physics Letters, 267, 258-262, 1997.
- 42. Berces, A., Mitchell, S.A., Zgierski, M.Z., Reactions Between M_n (M: Nb, Mo and n=1, 2, 3, and 4) and N₂. A Density Functional Study, Journal Physical Chemistry A, 102, 6340-6347, 1998.
- Duan, H.X., Li, Q. S., A Series of Novel Aromatic Compounds with a Planar N₆ Ring, Chemical Physics Letters, 432, 331–335, 2006.
- 44. Jiang, Z.Y. ve ark., Theoretical Study of Structures and Stabilities of C_mN₂ (m=1–14) Ions, International Journal of Mass Spectrometry, 230, 33-39, 2003.
- Duan, H.X., Li, Q.S., Structure Stability and Chemical Bonding Character of Covalent Boron Azides BX(N₃)₂ (X=F, Cl, Br), Journal of Moleculer Structure, THEOCHEM, 759, 171-176,2006.

- Langmi, H.V., McGrady, G.S., Ternary Nitrides for Hydrogen Storage: Li–B–N, Li–Al–N and Li–Ga–N Systems, Journal of Alloys and Compounds, 466, 287– 292, 2008.
- 47. Song, B., Yong, Y., Theoretical Study of Small Al–Ga–N Ternary Clusters, Jornal of Moleculer Structure, THEOCHEM, 907, 74-84, 2009.
- 48. Aouadi, S.M., Namavar, F., Gorishnyy, T.Z., Rohde, S.L., Characterization of TiBN Films Grown by Ion Beam Assisted Deposition, Surface and Coatings Technology, 160, 145-151, 2002.
- 49. Chu, K., Shen, Y.G., Mechanical And Tribological Properties of Nanostructured TiN/TiBN Multilayer Films, Wear, 265, 516–524, 2008.
- 50. Ding, Z.H. ve ark., Formation of Titanium Nitride by Mechanical Milling and Isothermal Annealing of Titanium and Boron Nitride, Journal of Alloys and Compounds, 391, 77-81, 2005.
- 51. Dobrzanski, L.A. ve ark., Structure and Energetic of B_n (n =2–12) Clusters: Electronic Structure Calculations, International Journal of Quantum Chemistry, 107, 729–744, 2007.
- 52. Flores, M., Muhl S., Andrade, E., The Relation Between The Plasma Characteristic and The Corrosion Properties of TiN/Ti Multilayers Deposited by Unbalanced Magnetron Sputtering, Thin Solid Films, 433, 217–223, 2003.
- 53. Jung, D.H. ve ark., Deposition of Ti–B–N Films by ICP Assisted Sputtering, Surface and Coatings Technology, 174–175, 638–642, 2003.
- 54. Mayrhofer, P.H., Stoiber, M., Mitterer, C., Age Hardening of PACVD TiBN Thin Films, Scripta Materialia, 53, 241-245, 2005.
- 55. Tanno, Y., Azushima, A., Frictional Property of Ti–B–N Coating with Preferred Grain Orientations Deposited by Arc Ion Plating Under Dry Condition, Surface & Coatings Technology, 203, 3631–3637, 2009.
- 56. Zang, R.F., Sheng, S.H., Veprek, S., Stability of Ti-B-N Solid Solutions and the Formation of nc-TiN/a-BN Nanocomposites Studied by Combined Ab-initio and Thermodynamic Calculations, Acta Materialia, 56, 4440-4449, 2008.
- 57. Frisch, E., Foresman, J.M., Exploring Chemistry with Elektronic Structure Methods, Gaussian, Inc., Wallingford, U.S.A., 1996.
- 58. Miessler, G., Tarr, D.A., İnorg. Chem., Nortfield, Minnesota, 1999.
- 59. Gündüz, T., Koordinasyon Kimyası, Gazi Kitapevi, 2003.
- 60. Şahin, Y., Gocayev, N., Kimyasal Bağların Niteliği, Nobel Yayın Dağıtım, 24, 2008.
- 61. Persson, R. G., Chemical Hardness and Density Functional Theory, Jornal of Chemical Science, 117, 369-377, 2005.

- 62. Russon, L.M. ve ark., Photodissociation Measurements of Bond Dissociation Energies: Ti_2^+ , V_2^+ , Co_2^+ and Co_3^+ , J. Chem. Phys., 100, 4747-4755, 1994.
- 63. Atış, M., Özdoğan, C., Güvenç, Z.B., Structure and Energetic of B_n (n =2–12) Clusters: Electronic Structure Calculations, International Journal of Quantum Chemistry, 107, 729–744, 2007.
- 64. Atış, M., Özdoğan, C., Güvenç, Z.B., Density Functional Study of Physical and Chemical Properties of Nano Size Boron Clusters: B_n (n =13–20), Chinese Journal of Chemical Physics, 22, 380-388, 2009.

ÖZGEÇMİŞ

05.03.1987 tarihinde Balıkesir' de doğdu. İlköğretim ve lise öğrenimini sırasıyla Topkapılı Mehmet Bey İlköğretim Okulu, Fatih Vatan Lisesinde tamamladı. 2004 yılında Erciyes Üniversitesi, Fizik Bölümünü kazandı ve 2008 yılında mezun oldu. 2008 yılında yüksek lisans eğitimine Bozok Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalında başladı. Doç. Dr. Mustafa BÖYÜKATA danışmanlığında hazırladığı 'Titanyum-Azot Topakları ve Bor Katkılanması' başlıklı teziyle 2011 yılında mezun oldu.

İletişim Bilgileri

Adres : Yaylabayır Beldesi Sındırgı 10345- BALIKESİR

E-posta: nur.elmas@bozok.edu.tr